Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water

Abstract Water under 2D confinement exhibits unique structural and dynamic behaviors distinct from bulk water, including phase transitions and altered hydrogen-bonding networks, making it of great scientific interest. While confinement in 2D materials like graphene, mica, or hexagonal boron nitride...

Full description

Saved in:
Bibliographic Details
Main Authors: Teng Zhang, Katherine A. Mazzio, Ruocun John Wang, Mailis Lounasvuori, Ameer Al-Temimy, Faidra Amargianou, Mohamad-Assaad Mawass, Florian Kronast, Daniel M. Többens, Klaus Lips, Tristan Petit, Yury Gogotsi
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-62892-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849343161635176448
author Teng Zhang
Katherine A. Mazzio
Ruocun John Wang
Mailis Lounasvuori
Ameer Al-Temimy
Faidra Amargianou
Mohamad-Assaad Mawass
Florian Kronast
Daniel M. Többens
Klaus Lips
Tristan Petit
Yury Gogotsi
author_facet Teng Zhang
Katherine A. Mazzio
Ruocun John Wang
Mailis Lounasvuori
Ameer Al-Temimy
Faidra Amargianou
Mohamad-Assaad Mawass
Florian Kronast
Daniel M. Többens
Klaus Lips
Tristan Petit
Yury Gogotsi
author_sort Teng Zhang
collection DOAJ
description Abstract Water under 2D confinement exhibits unique structural and dynamic behaviors distinct from bulk water, including phase transitions and altered hydrogen-bonding networks, making it of great scientific interest. While confinement in 2D materials like graphene, mica, or hexagonal boron nitride has been reported, their lack of intrinsic hydrophilicity or metallic conductivity limits their suitability for probing the interplay between confined water and electronic transport. MXenes, a family of 2D transition metal carbides and nitrides, overcome these limitations by combining high metallic conductivity (~104 S cm−1) with hydrophilicity, offering a unique platform to investigate confined water dynamics and their influence on electronic properties. Here, we show that temperature and confinement drive structural transitions of water within MXene interlayers, including the formation of localized ice clusters, amorphous ice, and dynamic hydrogen-bonded networks. These transformations disrupt stacking order, inducing a reversible metal-to-semiconductor transition and conductivity hysteresis in MXene films. Upon heating to 340 K, the dissociation of ice clusters restores interlayer spacing and metallic behavior. Our findings experimentally establish MXenes as an exceptional platform for studying the phase change of confined water, offering new insights into how nanoscale water dynamics modulate electronic properties and enabling the design of advanced devices with tunable interlayer interactions.
format Article
id doaj-art-44a9c45c862b4e9ebadeec2c982997fd
institution Kabale University
issn 2041-1723
language English
publishDate 2025-08-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-44a9c45c862b4e9ebadeec2c982997fd2025-08-20T03:43:10ZengNature PortfolioNature Communications2041-17232025-08-0116111110.1038/s41467-025-62892-7Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined waterTeng Zhang0Katherine A. Mazzio1Ruocun John Wang2Mailis Lounasvuori3Ameer Al-Temimy4Faidra Amargianou5Mohamad-Assaad Mawass6Florian Kronast7Daniel M. Többens8Klaus Lips9Tristan Petit10Yury Gogotsi11A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel UniversityDepartment of Chemistry, Humboldt University of BerlinA.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel UniversityHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHelmholtz-Zentrum Berlin für Materialien und Energie GmbHA.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel UniversityAbstract Water under 2D confinement exhibits unique structural and dynamic behaviors distinct from bulk water, including phase transitions and altered hydrogen-bonding networks, making it of great scientific interest. While confinement in 2D materials like graphene, mica, or hexagonal boron nitride has been reported, their lack of intrinsic hydrophilicity or metallic conductivity limits their suitability for probing the interplay between confined water and electronic transport. MXenes, a family of 2D transition metal carbides and nitrides, overcome these limitations by combining high metallic conductivity (~104 S cm−1) with hydrophilicity, offering a unique platform to investigate confined water dynamics and their influence on electronic properties. Here, we show that temperature and confinement drive structural transitions of water within MXene interlayers, including the formation of localized ice clusters, amorphous ice, and dynamic hydrogen-bonded networks. These transformations disrupt stacking order, inducing a reversible metal-to-semiconductor transition and conductivity hysteresis in MXene films. Upon heating to 340 K, the dissociation of ice clusters restores interlayer spacing and metallic behavior. Our findings experimentally establish MXenes as an exceptional platform for studying the phase change of confined water, offering new insights into how nanoscale water dynamics modulate electronic properties and enabling the design of advanced devices with tunable interlayer interactions.https://doi.org/10.1038/s41467-025-62892-7
spellingShingle Teng Zhang
Katherine A. Mazzio
Ruocun John Wang
Mailis Lounasvuori
Ameer Al-Temimy
Faidra Amargianou
Mohamad-Assaad Mawass
Florian Kronast
Daniel M. Többens
Klaus Lips
Tristan Petit
Yury Gogotsi
Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
Nature Communications
title Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
title_full Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
title_fullStr Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
title_full_unstemmed Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
title_short Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
title_sort conductivity hysteresis in mxene driven by structural dynamics of nanoconfined water
url https://doi.org/10.1038/s41467-025-62892-7
work_keys_str_mv AT tengzhang conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT katherineamazzio conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT ruocunjohnwang conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT mailislounasvuori conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT ameeraltemimy conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT faidraamargianou conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT mohamadassaadmawass conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT floriankronast conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT danielmtobbens conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT klauslips conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT tristanpetit conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater
AT yurygogotsi conductivityhysteresisinmxenedrivenbystructuraldynamicsofnanoconfinedwater