The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors

<b>Background/Objectives</b>: Sepsis has been shown to depress arterial baroreceptor function, and this effect is counterbalanced by the cholinergic anti-inflammatory pathway. Considering the importance of central adenosine receptors in baroreceptor function, this study tested whether ce...

Full description

Saved in:
Bibliographic Details
Main Authors: Amany E. El-Naggar, Mai M. Helmy, Sahar M. El-Gowilly, Mahmoud M. El-Mas
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/18/3/388
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Background/Objectives</b>: Sepsis has been shown to depress arterial baroreceptor function, and this effect is counterbalanced by the cholinergic anti-inflammatory pathway. Considering the importance of central adenosine receptors in baroreceptor function, this study tested whether central adenosine A3 receptors (A3ARs) modulate the cholinergic-baroreflex interaction in sepsis and whether this interaction is modulated by mitogen-activated protein kinases (MAPKs) and related proinflammatory cytokines. <b>Methods</b>: Sepsis was induced by cecal ligation and puncture (CLP) and rats were instrumented with femoral and intracisternal (i.c.) catheters. Baroreflex sensitivity (BRS) was measured 24 h later in conscious animals using the vasoactive method, which correlates changes in blood pressure caused by i.v. phenylephrine (PE) and sodium nitroprusside (SNP) to concomitant reciprocal changes in heart rate. <b>Results</b>: The reduction in reflex bradycardic (BRS-PE), but not tachycardic (BRS-SNP), responses elicited by CLP was reversed by i.v. nicotine in a dose-related manner. The BRS-PE effect of nicotine was blunted following intracisternal administration of IB-MECA (A3AR agonist, 4 µg/rat). The depressant action of IB-MECA on the BRS facilitatory action of nicotine was abrogated following central inhibition of MAPK-JNK (SP 600125), PI3K (wortmannin), and TNFα (infliximab), but not MAPK-ERK (PD 98059). Additionally, the nicotine suppression of sepsis-induced upregulation of NFκB and NOX2 expression in the nucleus tractus solitarius (NTS) was negated by A3AR activation. The molecular effect of IB-MECA on NFκB expression disappeared in the presence of SP 600125, wortmannin, or infliximab. <b>Conclusions</b>: The central PI3K/MAPK-JNK/TNFα pathway contributes to the restraining action of A3ARs on cholinergic amelioration of sepsis-induced central neuroinflammatory responses and impairment of the baroreceptor-mediated negative chronotropism.
ISSN:1424-8247