Transport and Response Coefficients in Second-Order Dissipative Relativistic Hydrodynamics with Quantum Corrections: Probing the Quark–Gluon Plasma

A functional measure encompasses quantum corrections and is explored in the fluid/gravity correspondence. Corrections to the response and transport coefficients in the second-order dissipative relativistic hydrodynamics are proposed, including those to the pressure, relaxation time, and shear relaxa...

Full description

Saved in:
Bibliographic Details
Main Authors: Iberê Kuntz, Roldao da Rocha
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/6/580
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A functional measure encompasses quantum corrections and is explored in the fluid/gravity correspondence. Corrections to the response and transport coefficients in the second-order dissipative relativistic hydrodynamics are proposed, including those to the pressure, relaxation time, and shear relaxation time. Their dependence on the quark–gluon plasma (QGP) temperature sets a temperature dependence on the running parameter encoding the one-loop quantum gravity correction, driven by a functional measure. The experimental range of the bulk-viscosity-to-entropy-density ratio of the QGP, obtained by five different analyses (JETSCAPE Bayesian model, Duke, Jyväskylä–Helsinki–Munich, MIT–Utrecht–Genève, and Shanghai) corroborates the existence of the functional measure. Our results suggest that high-temperature plasmas could be used to experimentally test quantum gravity.
ISSN:1099-4300