Role of 3-mercaptopyruvate sulfurtransferase in cancer: Molecular mechanisms and therapeutic perspectives

The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) holds the distinction of being the third identified gasotransmitter. Alternation of H2S level has been widely demonstrated to induce an ar...

Full description

Saved in:
Bibliographic Details
Main Authors: Ka Zhang, Yi-Wen Zhu, Ao-Qi Tang, Ze-Tao Zhou, Yi-Lun Yang, Zi-Hui Liu, Yan Li, Xiao-Yi Liang, Zhi-Fen Feng, Jun Wang, Tong Jiang, Qi-Ying Jiang, Dong-Dong Wu
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Translational Oncology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1936523325000038
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) holds the distinction of being the third identified gasotransmitter. Alternation of H2S level has been widely demonstrated to induce an array of disturbances in important cancer cell signaling pathways. As a result, the effects of H2S-catalyzing enzymes in cancers also attract widspread attention. 3-mercaptopyruvate sulfurtransferase (3-MST) is privileged to be one of them. In fact, 3-MST is overexpressed in many tumors including human colon cancer, lung adenocarcinoma, and bladder urothelial carcinoma. But it is also lowly expressed in hepatocellular carcinoma. In this review, we focus on the generation of endogenous H2S and polysulfides, facilitated by 3-MST. Additionally, we delve deeply into the potential role of 3-MST in tumorigenesis and development. The impact of 3-MST inhibition on the development of tumors and its potential for tumor therapy are also highlighted.
ISSN:1936-5233