The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode

The low-edge rotation, intrinsically ELM-free, and improved confinement wide-pedestal quiescent H-mode (QH-mode), discovered in DIII-D tokamak, has pedestal widths exceeding the EPED-kinetic-ballooning mode (KBM) model scaling typically by at least 25%. Ion-scale ( ${k_y}{\rho _s}$ < 1) microturb...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeyu Li, Xi Chen, Xiang Jian, Darin Ernst, Xueqiao Xu, R.J. Groebner, Huiqian Wang, T.H. Osborne, K.H. Burrell, the DIII-D Team
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:Nuclear Fusion
Subjects:
Online Access:https://doi.org/10.1088/1741-4326/ad91c6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850145947271561216
author Zeyu Li
Xi Chen
Xiang Jian
Darin Ernst
Xueqiao Xu
R.J. Groebner
Huiqian Wang
T.H. Osborne
K.H. Burrell
the DIII-D Team
author_facet Zeyu Li
Xi Chen
Xiang Jian
Darin Ernst
Xueqiao Xu
R.J. Groebner
Huiqian Wang
T.H. Osborne
K.H. Burrell
the DIII-D Team
author_sort Zeyu Li
collection DOAJ
description The low-edge rotation, intrinsically ELM-free, and improved confinement wide-pedestal quiescent H-mode (QH-mode), discovered in DIII-D tokamak, has pedestal widths exceeding the EPED-kinetic-ballooning mode (KBM) model scaling typically by at least 25%. Ion-scale ( ${k_y}{\rho _s}$ < 1) microturbulence and its role in setting the pedestal structure is investigated using the radially local $\delta f$ gyrokinetic code CGYRO. The electromagnetic trapped electron mode (TEM) is unstable at the pedestal top, while plasma beta ( ${\beta _e})$ is ∼60% below the KBM onset threshold and the electron temperature gradient mode is found to be unstable in the peak gradient region. Nonlinear simulation reveals that the ion-scale turbulence could produce electron energy flux consistent with the flux inferred from power balance at the pedestal top, with a reasonable variation of the local $E \times B$ shearing rate; and the local neoclassical transport from NEO is dominant over the simulated turbulent transport in the ion energy flux channel. The simulated ion-scale turbulence produces much lower electron energy flux than inferred from experiment in the pedestal peak gradient region. A correction to the EPED-KBM pedestal width scaling is obtained based on the two-dimensional scan of pedestal top plasma beta ( ${\beta _e})$ and normalized electron density and temperature scale lengths, $a/{L_{{n_e}}}$ , $a/{L_{{T_e}}}$ using CGYRO linear simulations. Mode transitions among TEM, micro-tearing mode, ion-temperature gradient mode and KBM, are observed in the 2D scan at the pedestal top. A fixed normalized growth rate for these drift-type modes is taken to determine the pedestal width scaling, which shows good consistency with the QH experimental database on pedestal heights and widths. The onset of KBM instabilities and the local E × B shear suppression criterion set the lower and upper limit for the pedestal width of standard QH-mode, wide-pedestal QH-mode and type-I ELMy H mode. A potentially higher and wider pedestal is expected from the new scaling of pedestal width. This work presents an improved understanding of the ion-scale micro-turbulence of wide-pedestal QH-mode and sheds light on a promising scenario for future reactors, including ITER and beyond.
format Article
id doaj-art-4452ac16c26b4bc6aedead347c839a5f
institution OA Journals
issn 0029-5515
language English
publishDate 2024-01-01
publisher IOP Publishing
record_format Article
series Nuclear Fusion
spelling doaj-art-4452ac16c26b4bc6aedead347c839a5f2025-08-20T02:27:58ZengIOP PublishingNuclear Fusion0029-55152024-01-0165101603010.1088/1741-4326/ad91c6The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH modeZeyu Li0https://orcid.org/0000-0003-3932-9244Xi Chen1https://orcid.org/0000-0002-8718-6877Xiang Jian2https://orcid.org/0000-0003-3052-1694Darin Ernst3https://orcid.org/0000-0002-9577-2809Xueqiao Xu4https://orcid.org/0000-0003-1838-9790R.J. Groebner5https://orcid.org/0000-0002-5643-564XHuiqian Wang6https://orcid.org/0000-0003-1920-2799T.H. Osborne7https://orcid.org/0000-0003-2641-4597K.H. Burrell8the DIII-D TeamGeneral Atomics , San Diego, CA 92121, United States of AmericaGeneral Atomics , San Diego, CA 92121, United States of AmericaGeneral Atomics , San Diego, CA 92121, United States of America; Institute of Plasma Physics, Chinese Academy of Sciences , Hefei, Anhui 230031, ChinaMassachusetts Institute of Technology , Cambridge, MA 02139, United States of AmericaLawrence Livermore National Laboratory , Livermore, CA 94550, United States of AmericaGeneral Atomics , San Diego, CA 92121, United States of AmericaGeneral Atomics , San Diego, CA 92121, United States of AmericaGeneral Atomics , San Diego, CA 92121, United States of AmericaGeneral Atomics , San Diego, CA 92121, United States of AmericaThe low-edge rotation, intrinsically ELM-free, and improved confinement wide-pedestal quiescent H-mode (QH-mode), discovered in DIII-D tokamak, has pedestal widths exceeding the EPED-kinetic-ballooning mode (KBM) model scaling typically by at least 25%. Ion-scale ( ${k_y}{\rho _s}$ < 1) microturbulence and its role in setting the pedestal structure is investigated using the radially local $\delta f$ gyrokinetic code CGYRO. The electromagnetic trapped electron mode (TEM) is unstable at the pedestal top, while plasma beta ( ${\beta _e})$ is ∼60% below the KBM onset threshold and the electron temperature gradient mode is found to be unstable in the peak gradient region. Nonlinear simulation reveals that the ion-scale turbulence could produce electron energy flux consistent with the flux inferred from power balance at the pedestal top, with a reasonable variation of the local $E \times B$ shearing rate; and the local neoclassical transport from NEO is dominant over the simulated turbulent transport in the ion energy flux channel. The simulated ion-scale turbulence produces much lower electron energy flux than inferred from experiment in the pedestal peak gradient region. A correction to the EPED-KBM pedestal width scaling is obtained based on the two-dimensional scan of pedestal top plasma beta ( ${\beta _e})$ and normalized electron density and temperature scale lengths, $a/{L_{{n_e}}}$ , $a/{L_{{T_e}}}$ using CGYRO linear simulations. Mode transitions among TEM, micro-tearing mode, ion-temperature gradient mode and KBM, are observed in the 2D scan at the pedestal top. A fixed normalized growth rate for these drift-type modes is taken to determine the pedestal width scaling, which shows good consistency with the QH experimental database on pedestal heights and widths. The onset of KBM instabilities and the local E × B shear suppression criterion set the lower and upper limit for the pedestal width of standard QH-mode, wide-pedestal QH-mode and type-I ELMy H mode. A potentially higher and wider pedestal is expected from the new scaling of pedestal width. This work presents an improved understanding of the ion-scale micro-turbulence of wide-pedestal QH-mode and sheds light on a promising scenario for future reactors, including ITER and beyond.https://doi.org/10.1088/1741-4326/ad91c6tokamakwide pedestal QH modepedestal structuremicro-turbulence
spellingShingle Zeyu Li
Xi Chen
Xiang Jian
Darin Ernst
Xueqiao Xu
R.J. Groebner
Huiqian Wang
T.H. Osborne
K.H. Burrell
the DIII-D Team
The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode
Nuclear Fusion
tokamak
wide pedestal QH mode
pedestal structure
micro-turbulence
title The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode
title_full The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode
title_fullStr The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode
title_full_unstemmed The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode
title_short The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode
title_sort role of ion scale micro turbulence in pedestal width of the diii d wide pedestal qh mode
topic tokamak
wide pedestal QH mode
pedestal structure
micro-turbulence
url https://doi.org/10.1088/1741-4326/ad91c6
work_keys_str_mv AT zeyuli theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT xichen theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT xiangjian theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT darinernst theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT xueqiaoxu theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT rjgroebner theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT huiqianwang theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT thosborne theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT khburrell theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT thediiidteam theroleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT zeyuli roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT xichen roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT xiangjian roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT darinernst roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT xueqiaoxu roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT rjgroebner roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT huiqianwang roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT thosborne roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT khburrell roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode
AT thediiidteam roleofionscalemicroturbulenceinpedestalwidthofthediiidwidepedestalqhmode