Optimization on Production-Inventory Problem with Multistage and Varying Demand

This paper addresses production-inventory problem for the manufacturer by explicitly taking into account multistage and varying demand. A nonlinear hybrid integer constrained optimization is modeled to minimize the total cost including setup cost and holding cost in the planning horizon. A genetic a...

Full description

Saved in:
Bibliographic Details
Main Authors: Duan Gang, Chen Li, Li Yin-Zhen, Song Jie-Yan, Akhtar Tanweer
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/648262
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses production-inventory problem for the manufacturer by explicitly taking into account multistage and varying demand. A nonlinear hybrid integer constrained optimization is modeled to minimize the total cost including setup cost and holding cost in the planning horizon. A genetic algorithm is developed for the problem. A series of computational experiments with different sizes is used to demonstrate the efficiency and universality of the genetic algorithm in terms of the running time and solution quality. At last the combination of crossover probability and mutation probability is tested for all problems and a law is found for large size.
ISSN:1110-757X
1687-0042