Weighted holomorphic Besov spaces on the polydisk

This work is an introduction of weighted Besov spaces of holomorphic functions on the polydisk. Let Un be the unit polydisk in Cn and S be the space of functions of regular variation. Let 1≤p<∞,ω=(ω1,…,ωn),ωj∈S(1≤j≤n) and f∈H(Un). The function f is said to be an element of the holomorphic Besov s...

Full description

Saved in:
Bibliographic Details
Main Authors: Anahit V. Harutyunyan, Wolfgang Lusky
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2011/637083
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850223678642454528
author Anahit V. Harutyunyan
Wolfgang Lusky
author_facet Anahit V. Harutyunyan
Wolfgang Lusky
author_sort Anahit V. Harutyunyan
collection DOAJ
description This work is an introduction of weighted Besov spaces of holomorphic functions on the polydisk. Let Un be the unit polydisk in Cn and S be the space of functions of regular variation. Let 1≤p<∞,ω=(ω1,…,ωn),ωj∈S(1≤j≤n) and f∈H(Un). The function f is said to be an element of the holomorphic Besov space Bp(ω) if ‖f‖Bp(ω)p=∫Un|Df(z)|p∏j=1nωj(1-|zj|)/(1-|zj|2)2-pdm2n(z)<+∞, where dm2n(z) is the 2n-dimensional Lebesgue measure on Un and D stands for a special fractional derivative of f defined in the paper. For example, if n=1 then Df is the derivative of the function zf(z).
format Article
id doaj-art-44028e40ccb54f6aada92e0158ddee3e
institution OA Journals
issn 0972-6802
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-44028e40ccb54f6aada92e0158ddee3e2025-08-20T02:05:51ZengWileyJournal of Function Spaces and Applications0972-68022011-01-019111610.1155/2011/637083Weighted holomorphic Besov spaces on the polydiskAnahit V. Harutyunyan0Wolfgang Lusky1Fac. for Inf. and Appl. Math., University of Yerevan, Alek Manukian 1, Yerevan 25, ArmeniaInst. for Math., University of Paderborn, Warburger Str. 100, D-33098 Paderborn, GermanyThis work is an introduction of weighted Besov spaces of holomorphic functions on the polydisk. Let Un be the unit polydisk in Cn and S be the space of functions of regular variation. Let 1≤p<∞,ω=(ω1,…,ωn),ωj∈S(1≤j≤n) and f∈H(Un). The function f is said to be an element of the holomorphic Besov space Bp(ω) if ‖f‖Bp(ω)p=∫Un|Df(z)|p∏j=1nωj(1-|zj|)/(1-|zj|2)2-pdm2n(z)<+∞, where dm2n(z) is the 2n-dimensional Lebesgue measure on Un and D stands for a special fractional derivative of f defined in the paper. For example, if n=1 then Df is the derivative of the function zf(z).http://dx.doi.org/10.1155/2011/637083
spellingShingle Anahit V. Harutyunyan
Wolfgang Lusky
Weighted holomorphic Besov spaces on the polydisk
Journal of Function Spaces and Applications
title Weighted holomorphic Besov spaces on the polydisk
title_full Weighted holomorphic Besov spaces on the polydisk
title_fullStr Weighted holomorphic Besov spaces on the polydisk
title_full_unstemmed Weighted holomorphic Besov spaces on the polydisk
title_short Weighted holomorphic Besov spaces on the polydisk
title_sort weighted holomorphic besov spaces on the polydisk
url http://dx.doi.org/10.1155/2011/637083
work_keys_str_mv AT anahitvharutyunyan weightedholomorphicbesovspacesonthepolydisk
AT wolfganglusky weightedholomorphicbesovspacesonthepolydisk