Evolution of the eddy field in the Arctic Ocean's Canada Basin, 2005–2015

Abstract The eddy field across the Arctic Ocean's Canada Basin is analyzed using Ice‐Tethered Profiler (ITP) and moored measurements of temperature, salinity, and velocity spanning 2005 to 2015. ITPs encountered 243 eddies, 98% of which were anticyclones, with approximately 70% of these having...

Full description

Saved in:
Bibliographic Details
Main Authors: Mengnan Zhao, Mary‐Louise Timmermans, Sylvia Cole, Richard Krishfield, John Toole
Format: Article
Language:English
Published: Wiley 2016-08-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1002/2016GL069671
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The eddy field across the Arctic Ocean's Canada Basin is analyzed using Ice‐Tethered Profiler (ITP) and moored measurements of temperature, salinity, and velocity spanning 2005 to 2015. ITPs encountered 243 eddies, 98% of which were anticyclones, with approximately 70% of these having anomalously cold cores. The spatially and temporally varying eddy field is analyzed accounting for sampling biases in the unevenly distributed ITP data and caveats in detection methods. The highest concentration of eddies was found in the western and southern portions of the basin, close to topographic margins and boundaries of the Beaufort Gyre. The number of lower halocline eddies approximately doubled from 2005–2012 to 2013–2014. The increased eddy density suggests more active baroclinic instability of the Beaufort Gyre that releases available potential energy to balance the wind energy input; this may stabilize the Gyre spin‐up and associated freshwater increase.
ISSN:0094-8276
1944-8007