Horváth Spaces and a Representations of the Fourier Transform and Convolution

This paper explores the structural representation and Fourier analysis of elements in Horváth distribution spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="script">...

Full description

Saved in:
Bibliographic Details
Main Authors: Emilio R. Negrín, Benito J. González, Jeetendrasingh Maan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/15/2435
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849406247231553536
author Emilio R. Negrín
Benito J. González
Jeetendrasingh Maan
author_facet Emilio R. Negrín
Benito J. González
Jeetendrasingh Maan
author_sort Emilio R. Negrín
collection DOAJ
description This paper explores the structural representation and Fourier analysis of elements in Horváth distribution spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="script">S</mi><mi>k</mi><mo>′</mo></msubsup></semantics></math></inline-formula>, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo><</mo><mo>−</mo><mi>n</mi></mrow></semantics></math></inline-formula>. We prove that any element in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="script">S</mi><mi>k</mi><mo>′</mo></msubsup></semantics></math></inline-formula> can be expressed as a finite sum of derivatives of continuous <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>1</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-functions acting on Schwartz test functions. This representation leads to an explicit expression for their distributional Fourier transform in terms of classical Fourier transforms. Additionally, we present a distributional representation for the convolution of two such elements, showing that the convolution is well-defined over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>. These results deepen our understanding of non-tempered distributions and extend Fourier methods to a broader functional framework.
format Article
id doaj-art-4347c3a98ca54ab096bf2d2756b5b2e6
institution Kabale University
issn 2227-7390
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-4347c3a98ca54ab096bf2d2756b5b2e62025-08-20T03:36:27ZengMDPI AGMathematics2227-73902025-07-011315243510.3390/math13152435Horváth Spaces and a Representations of the Fourier Transform and ConvolutionEmilio R. Negrín0Benito J. González1Jeetendrasingh Maan2Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna (ULL), Campus de Anchieta, ES-38271 La Laguna, SpainDepartamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna (ULL), Campus de Anchieta, ES-38271 La Laguna, SpainDepartment of Mathematics and Scientific Computing, National Institute of Technology, Hamirpur 177005, IndiaThis paper explores the structural representation and Fourier analysis of elements in Horváth distribution spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="script">S</mi><mi>k</mi><mo>′</mo></msubsup></semantics></math></inline-formula>, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo><</mo><mo>−</mo><mi>n</mi></mrow></semantics></math></inline-formula>. We prove that any element in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="script">S</mi><mi>k</mi><mo>′</mo></msubsup></semantics></math></inline-formula> can be expressed as a finite sum of derivatives of continuous <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>1</mn></msup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-functions acting on Schwartz test functions. This representation leads to an explicit expression for their distributional Fourier transform in terms of classical Fourier transforms. Additionally, we present a distributional representation for the convolution of two such elements, showing that the convolution is well-defined over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula>. These results deepen our understanding of non-tempered distributions and extend Fourier methods to a broader functional framework.https://www.mdpi.com/2227-7390/13/15/2435classical Fourier transformdistributional Fourier transformrepresentation of distributionsHorváth spacesconvolution
spellingShingle Emilio R. Negrín
Benito J. González
Jeetendrasingh Maan
Horváth Spaces and a Representations of the Fourier Transform and Convolution
Mathematics
classical Fourier transform
distributional Fourier transform
representation of distributions
Horváth spaces
convolution
title Horváth Spaces and a Representations of the Fourier Transform and Convolution
title_full Horváth Spaces and a Representations of the Fourier Transform and Convolution
title_fullStr Horváth Spaces and a Representations of the Fourier Transform and Convolution
title_full_unstemmed Horváth Spaces and a Representations of the Fourier Transform and Convolution
title_short Horváth Spaces and a Representations of the Fourier Transform and Convolution
title_sort horvath spaces and a representations of the fourier transform and convolution
topic classical Fourier transform
distributional Fourier transform
representation of distributions
Horváth spaces
convolution
url https://www.mdpi.com/2227-7390/13/15/2435
work_keys_str_mv AT emiliornegrin horvathspacesandarepresentationsofthefouriertransformandconvolution
AT benitojgonzalez horvathspacesandarepresentationsofthefouriertransformandconvolution
AT jeetendrasinghmaan horvathspacesandarepresentationsofthefouriertransformandconvolution