Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism

Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating th...

Full description

Saved in:
Bibliographic Details
Main Authors: Naika Prince, Lucia N. Peralta Marzal, Léa Roussin, Magali Monnoye, Catherine Philippe, Elise Maximin, Sabbir Ahmed, Karoliina Salenius, Jake Lin, Reija Autio, Youri Adolfs, R. Jeroen Pasterkamp, Johan Garssen, Laurent Naudon, Sylvie Rabot, Aletta D. Kraneveld, Paula Perez-Pardo
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Gut Microbes
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/19490976.2024.2447822
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis’ involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.
ISSN:1949-0976
1949-0984