Crystal Plasticity Finite Element Simulation of Tensile Fracture of 316L Stainless Steel Produced by Selective Laser Melting
Selective Laser Melting (SLM) of 316L stainless steel exhibits great potential prospects for engineering applications due to its high strength, high forming freedom, and low material waste. However, due to the unique processing technology of additive manufacturing, challenges related to the microstr...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/15/5/567 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Selective Laser Melting (SLM) of 316L stainless steel exhibits great potential prospects for engineering applications due to its high strength, high forming freedom, and low material waste. However, due to the unique processing technology of additive manufacturing, challenges related to the microstructure and differences in the mechanical properties of the formed parts are inevitable. To investigate the influence of building direction and grain boundary strength on the fracture parameters of SLM 316L stainless steel, electron backscatter diffraction (EBSD) experiments were conducted to characterize the microstructure of SLM 316L stainless-steel specimens. A representative volume element (RVE) model reflecting the microstructure of SLM 316L stainless steel was established based on a combination of the crystal plastic finite element method (CPFEM) and UMAT subroutine technology. The crystal plasticity parameters were determined by comparing the results of tensile tests. Cohesive elements were employed and inserted at the grain boundaries of the polycrystalline RVE to simulate the intergranular fracture behavior of SLM 316L stainless steel under uniaxial tensile loading. The damage and fracture mechanisms of the material at the microscale were analyzed. The simulated tensile stress–strain curves were in good agreement with the experimental results; hence, the combined CPFEM model is suitable for characterizing the mechanical response and fracture behavior of the SLM 316L stainless steel. The results revealed that cracks initiate at stress concentration sites and propagate along grain boundaries with increasing external load, ultimately leading to rupture. Additionally, the building direction influences the location of microcracks and their propagation significantly. |
|---|---|
| ISSN: | 2075-4701 |