Sensitivity Analysis of Transonic Flow over J-78 Wings

3D transonic flow over swept and unswept wings with an J-78 airfoil at spanwise sections is studied numerically at negative and vanishing angles of attack. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver on unstructured meshes. The numeric...

Full description

Saved in:
Bibliographic Details
Main Author: Alexander Kuzmin
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2015/579343
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3D transonic flow over swept and unswept wings with an J-78 airfoil at spanwise sections is studied numerically at negative and vanishing angles of attack. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver on unstructured meshes. The numerical simulation shows that adverse Mach numbers, at which the lift coefficient is highly sensitive to small perturbations, are larger than those obtained earlier for 2D flow. Due to the larger Mach numbers, there is an onset of self-exciting oscillations of shock waves on the wings. The swept wing exhibits a higher sensitivity to variations of the Mach number than the unswept one.
ISSN:1687-5966
1687-5974