On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary

Abstract This study presents comprehensive examples of $$\mathfrak {osp}(\mathcal {N}|2)$$ osp ( N | 2 ) Chern–Simons supergravity on $$AdS_3$$ A d S 3 for $$\mathcal {N}>2$$ N > 2 . These formulations, which include the most general boundary conditions, represent extensions of previously disc...

Full description

Saved in:
Bibliographic Details
Main Authors: H. T. Özer, Aytül Filiz
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-025-13786-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585417005727744
author H. T. Özer
Aytül Filiz
author_facet H. T. Özer
Aytül Filiz
author_sort H. T. Özer
collection DOAJ
description Abstract This study presents comprehensive examples of $$\mathfrak {osp}(\mathcal {N}|2)$$ osp ( N | 2 ) Chern–Simons supergravity on $$AdS_3$$ A d S 3 for $$\mathcal {N}>2$$ N > 2 . These formulations, which include the most general boundary conditions, represent extensions of previously discovered works (Ozer and Filiz in Eur Phys J C 82:472, 2022. https://doi.org/10.1140/epjc/s10052-022-10422-w ) for $$\mathcal {N}<3$$ N < 3 . In our work, we show that under the loosest set of boundary conditions, the asymptotic symmetry algebras consist of two copies of the $$\mathfrak {osp}(3|2)_k$$ osp ( 3 | 2 ) k and $$\mathfrak {osp}(4|2)_k$$ osp ( 4 | 2 ) k algebras. We subsequently restrict the gauge fields upon the boundary conditions to achieve supersymmetric extensions of the Brown–Henneaux boundary conditions. Based on these results, we finally find that the asymptotic symmetry algebras are two copies of the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal algebras for $$\mathcal {N}=(3,3)$$ N = ( 3 , 3 ) and $$\mathcal {N}=(4,4)$$ N = ( 4 , 4 ) extended higher-spin supergravity theory in $$AdS_3$$ A d S 3 .
format Article
id doaj-art-430719fb3995405aa28c38882d6bc9e3
institution Kabale University
issn 1434-6052
language English
publishDate 2025-01-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj-art-430719fb3995405aa28c38882d6bc9e32025-01-26T12:49:30ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-01-0185111510.1140/epjc/s10052-025-13786-xOn the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionaryH. T. Özer0Aytül Filiz1Physics Department, Faculty of Science and Letters, Istanbul Technical UniversityPhysics Department, Faculty of Science and Letters, Istanbul Technical UniversityAbstract This study presents comprehensive examples of $$\mathfrak {osp}(\mathcal {N}|2)$$ osp ( N | 2 ) Chern–Simons supergravity on $$AdS_3$$ A d S 3 for $$\mathcal {N}>2$$ N > 2 . These formulations, which include the most general boundary conditions, represent extensions of previously discovered works (Ozer and Filiz in Eur Phys J C 82:472, 2022. https://doi.org/10.1140/epjc/s10052-022-10422-w ) for $$\mathcal {N}<3$$ N < 3 . In our work, we show that under the loosest set of boundary conditions, the asymptotic symmetry algebras consist of two copies of the $$\mathfrak {osp}(3|2)_k$$ osp ( 3 | 2 ) k and $$\mathfrak {osp}(4|2)_k$$ osp ( 4 | 2 ) k algebras. We subsequently restrict the gauge fields upon the boundary conditions to achieve supersymmetric extensions of the Brown–Henneaux boundary conditions. Based on these results, we finally find that the asymptotic symmetry algebras are two copies of the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal algebras for $$\mathcal {N}=(3,3)$$ N = ( 3 , 3 ) and $$\mathcal {N}=(4,4)$$ N = ( 4 , 4 ) extended higher-spin supergravity theory in $$AdS_3$$ A d S 3 .https://doi.org/10.1140/epjc/s10052-025-13786-x
spellingShingle H. T. Özer
Aytül Filiz
On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
European Physical Journal C: Particles and Fields
title On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
title_full On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
title_fullStr On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
title_full_unstemmed On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
title_short On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
title_sort on the mathcal n 3 n 3 and mathcal n 4 n 4 superconformal holographic dictionary
url https://doi.org/10.1140/epjc/s10052-025-13786-x
work_keys_str_mv AT htozer onthemathcaln3n3andmathcaln4n4superconformalholographicdictionary
AT aytulfiliz onthemathcaln3n3andmathcaln4n4superconformalholographicdictionary