On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary
Abstract This study presents comprehensive examples of $$\mathfrak {osp}(\mathcal {N}|2)$$ osp ( N | 2 ) Chern–Simons supergravity on $$AdS_3$$ A d S 3 for $$\mathcal {N}>2$$ N > 2 . These formulations, which include the most general boundary conditions, represent extensions of previously disc...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2025-01-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-025-13786-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832585417005727744 |
---|---|
author | H. T. Özer Aytül Filiz |
author_facet | H. T. Özer Aytül Filiz |
author_sort | H. T. Özer |
collection | DOAJ |
description | Abstract This study presents comprehensive examples of $$\mathfrak {osp}(\mathcal {N}|2)$$ osp ( N | 2 ) Chern–Simons supergravity on $$AdS_3$$ A d S 3 for $$\mathcal {N}>2$$ N > 2 . These formulations, which include the most general boundary conditions, represent extensions of previously discovered works (Ozer and Filiz in Eur Phys J C 82:472, 2022. https://doi.org/10.1140/epjc/s10052-022-10422-w ) for $$\mathcal {N}<3$$ N < 3 . In our work, we show that under the loosest set of boundary conditions, the asymptotic symmetry algebras consist of two copies of the $$\mathfrak {osp}(3|2)_k$$ osp ( 3 | 2 ) k and $$\mathfrak {osp}(4|2)_k$$ osp ( 4 | 2 ) k algebras. We subsequently restrict the gauge fields upon the boundary conditions to achieve supersymmetric extensions of the Brown–Henneaux boundary conditions. Based on these results, we finally find that the asymptotic symmetry algebras are two copies of the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal algebras for $$\mathcal {N}=(3,3)$$ N = ( 3 , 3 ) and $$\mathcal {N}=(4,4)$$ N = ( 4 , 4 ) extended higher-spin supergravity theory in $$AdS_3$$ A d S 3 . |
format | Article |
id | doaj-art-430719fb3995405aa28c38882d6bc9e3 |
institution | Kabale University |
issn | 1434-6052 |
language | English |
publishDate | 2025-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | European Physical Journal C: Particles and Fields |
spelling | doaj-art-430719fb3995405aa28c38882d6bc9e32025-01-26T12:49:30ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-01-0185111510.1140/epjc/s10052-025-13786-xOn the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionaryH. T. Özer0Aytül Filiz1Physics Department, Faculty of Science and Letters, Istanbul Technical UniversityPhysics Department, Faculty of Science and Letters, Istanbul Technical UniversityAbstract This study presents comprehensive examples of $$\mathfrak {osp}(\mathcal {N}|2)$$ osp ( N | 2 ) Chern–Simons supergravity on $$AdS_3$$ A d S 3 for $$\mathcal {N}>2$$ N > 2 . These formulations, which include the most general boundary conditions, represent extensions of previously discovered works (Ozer and Filiz in Eur Phys J C 82:472, 2022. https://doi.org/10.1140/epjc/s10052-022-10422-w ) for $$\mathcal {N}<3$$ N < 3 . In our work, we show that under the loosest set of boundary conditions, the asymptotic symmetry algebras consist of two copies of the $$\mathfrak {osp}(3|2)_k$$ osp ( 3 | 2 ) k and $$\mathfrak {osp}(4|2)_k$$ osp ( 4 | 2 ) k algebras. We subsequently restrict the gauge fields upon the boundary conditions to achieve supersymmetric extensions of the Brown–Henneaux boundary conditions. Based on these results, we finally find that the asymptotic symmetry algebras are two copies of the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal algebras for $$\mathcal {N}=(3,3)$$ N = ( 3 , 3 ) and $$\mathcal {N}=(4,4)$$ N = ( 4 , 4 ) extended higher-spin supergravity theory in $$AdS_3$$ A d S 3 .https://doi.org/10.1140/epjc/s10052-025-13786-x |
spellingShingle | H. T. Özer Aytül Filiz On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary European Physical Journal C: Particles and Fields |
title | On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary |
title_full | On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary |
title_fullStr | On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary |
title_full_unstemmed | On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary |
title_short | On the $$\mathcal {N}=3$$ N = 3 and $$\mathcal {N}=4$$ N = 4 superconformal holographic dictionary |
title_sort | on the mathcal n 3 n 3 and mathcal n 4 n 4 superconformal holographic dictionary |
url | https://doi.org/10.1140/epjc/s10052-025-13786-x |
work_keys_str_mv | AT htozer onthemathcaln3n3andmathcaln4n4superconformalholographicdictionary AT aytulfiliz onthemathcaln3n3andmathcaln4n4superconformalholographicdictionary |