Research on Flame Temperature Measurement Technique Combining Spectral Analysis and Two-Color Pyrometry
This work presents a method for measuring flame temperatures through an imaging technique that combines spectral analysis with two-color pyrometry. Initially, we employed Laser-Induced Breakdown Spectroscopy (LIBS) to analyze the radiation spectrum of nitrocellulose, selecting 694 nm and 768 nm as t...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/11/5864 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work presents a method for measuring flame temperatures through an imaging technique that combines spectral analysis with two-color pyrometry. Initially, we employed Laser-Induced Breakdown Spectroscopy (LIBS) to analyze the radiation spectrum of nitrocellulose, selecting 694 nm and 768 nm as the two spectral lines for temperature measurement. Subsequently, we constructed a temperature measurement system utilizing two sCMOS cameras and conducted calibration within the range of 600 to 1000 °C, achieving a maximum temperature measurement uncertainty of 3.43%. Finally, we successfully performed two-dimensional temperature field detection and imaging of nitrocellulose flames of varying qualities, achieving a flame image resolution of 2048 (H) × 2048 (V). In comparison to traditional two-color infrared thermometers and Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology, the maximum relative temperature measurement error was 2.1%. This work provides technical insights into the development of high-resolution, low-cost flame temperature imaging technology applicable across a wide range of fields. |
|---|---|
| ISSN: | 2076-3417 |