Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy

Gleeble thermomechanical simulators are widely utilized tools for the investigation of high-temperature deformation behavior in materials. However, temperature gradients that develop within the specimen during Gleeble compression tests have the potential to result in non-uniform deformation, which m...

Full description

Saved in:
Bibliographic Details
Main Authors: Olivier Pantalé, Yannis Muller, Yannick Balcaen
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Applied Mechanics
Subjects:
Online Access:https://www.mdpi.com/2673-3161/5/4/47
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850059588215242752
author Olivier Pantalé
Yannis Muller
Yannick Balcaen
author_facet Olivier Pantalé
Yannis Muller
Yannick Balcaen
author_sort Olivier Pantalé
collection DOAJ
description Gleeble thermomechanical simulators are widely utilized tools for the investigation of high-temperature deformation behavior in materials. However, temperature gradients that develop within the specimen during Gleeble compression tests have the potential to result in non-uniform deformation, which may subsequently impact the accuracy of the measured mechanical properties. This study presents an experimental and numerical investigation of the temperature fields in 2017-T4 aluminum alloy specimens prior to Gleeble compression tests at temperatures ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>300</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo> </mo><mi>to</mi><mrow></mrow><mo> </mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> utilizing uniform temperature distribution (ISO-T) tungsten carbide anvils. The use of multiple thermocouples, welded to both the specimen and anvils, offers valuable insights into the temperature gradients and their evolutions. A coupled thermal–electrical finite-element model was developed in Abaqus for the purpose of simulating the resistive heating process. A user amplitude subroutine (UAMP) is implemented to regulate the heating based on a proportional–integral–derivative (PID) algorithm that modulates the current density to follow the specified temperature profile. The numerical results demonstrate that the temperature gradients within the specimen at the end of the heating process, reaching a temperature of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>400</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, are minimal, with values below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.9</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. This is in accordance with the experimental observations. The addition of graphite foils between the specimen and anvils has been shown to effectively reduce the gradients. The use of the measured anvil temperature as a boundary condition, rather than a constant value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, has been demonstrated to improve the agreement between the simulated and experimental cooling curves. The modeling approach provides a framework for quantifying temperature gradients in Gleeble compression specimens and for assessing their impact on the measured constitutive response of materials at elevated temperatures.
format Article
id doaj-art-42884b28680249e7a6c79cf541ebf415
institution DOAJ
issn 2673-3161
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Applied Mechanics
spelling doaj-art-42884b28680249e7a6c79cf541ebf4152025-08-20T02:50:52ZengMDPI AGApplied Mechanics2673-31612024-11-015483985510.3390/applmech5040047Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum AlloyOlivier Pantalé0Yannis Muller1Yannick Balcaen2Laboratoire Génie de Production, Université de Technologie de Tarbes Occitanie Pyrénées, Université de Toulouse, 47 Av d’Azereix, 65016 Tarbes, FranceLaboratoire Génie de Production, Université de Technologie de Tarbes Occitanie Pyrénées, Université de Toulouse, 47 Av d’Azereix, 65016 Tarbes, FranceLaboratoire Génie de Production, Université de Technologie de Tarbes Occitanie Pyrénées, Université de Toulouse, 47 Av d’Azereix, 65016 Tarbes, FranceGleeble thermomechanical simulators are widely utilized tools for the investigation of high-temperature deformation behavior in materials. However, temperature gradients that develop within the specimen during Gleeble compression tests have the potential to result in non-uniform deformation, which may subsequently impact the accuracy of the measured mechanical properties. This study presents an experimental and numerical investigation of the temperature fields in 2017-T4 aluminum alloy specimens prior to Gleeble compression tests at temperatures ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>300</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo> </mo><mi>to</mi><mrow></mrow><mo> </mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> utilizing uniform temperature distribution (ISO-T) tungsten carbide anvils. The use of multiple thermocouples, welded to both the specimen and anvils, offers valuable insights into the temperature gradients and their evolutions. A coupled thermal–electrical finite-element model was developed in Abaqus for the purpose of simulating the resistive heating process. A user amplitude subroutine (UAMP) is implemented to regulate the heating based on a proportional–integral–derivative (PID) algorithm that modulates the current density to follow the specified temperature profile. The numerical results demonstrate that the temperature gradients within the specimen at the end of the heating process, reaching a temperature of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>400</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, are minimal, with values below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.9</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. This is in accordance with the experimental observations. The addition of graphite foils between the specimen and anvils has been shown to effectively reduce the gradients. The use of the measured anvil temperature as a boundary condition, rather than a constant value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, has been demonstrated to improve the agreement between the simulated and experimental cooling curves. The modeling approach provides a framework for quantifying temperature gradients in Gleeble compression specimens and for assessing their impact on the measured constitutive response of materials at elevated temperatures.https://www.mdpi.com/2673-3161/5/4/47Gleeble compression test2017-T4 aluminum alloythermal gradientnumerical simulationabaquscoupled electro-thermal model
spellingShingle Olivier Pantalé
Yannis Muller
Yannick Balcaen
Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
Applied Mechanics
Gleeble compression test
2017-T4 aluminum alloy
thermal gradient
numerical simulation
abaqus
coupled electro-thermal model
title Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
title_full Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
title_fullStr Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
title_full_unstemmed Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
title_short Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
title_sort advanced numerical modeling and experimental analysis of thermal gradients in gleeble compression configuration for 2017 t4 aluminum alloy
topic Gleeble compression test
2017-T4 aluminum alloy
thermal gradient
numerical simulation
abaqus
coupled electro-thermal model
url https://www.mdpi.com/2673-3161/5/4/47
work_keys_str_mv AT olivierpantale advancednumericalmodelingandexperimentalanalysisofthermalgradientsingleeblecompressionconfigurationfor2017t4aluminumalloy
AT yannismuller advancednumericalmodelingandexperimentalanalysisofthermalgradientsingleeblecompressionconfigurationfor2017t4aluminumalloy
AT yannickbalcaen advancednumericalmodelingandexperimentalanalysisofthermalgradientsingleeblecompressionconfigurationfor2017t4aluminumalloy