Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato

The integration of nanoparticles (NPs) into agriculture is altering traditional methods, enhancing productivity and sustainability. This study explores the application of iron oxide nanoparticles (FeONPs) to mitigate salt-alkaline stress in cherry tomatoes. We investigated FeONPs at three concentrat...

Full description

Saved in:
Bibliographic Details
Main Authors: Raheel Shahzad, Putri Widyanti Harlina, Shahid Ullah Khan, Sri Koerniati, Bernadetta Rina Hastilestari, Ratih Asmana Ningrum, Rizwan Wahab, Ivica Djalovic, P. V. Vara Prasad
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Journal of Plant Interactions
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/17429145.2024.2375508
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integration of nanoparticles (NPs) into agriculture is altering traditional methods, enhancing productivity and sustainability. This study explores the application of iron oxide nanoparticles (FeONPs) to mitigate salt-alkaline stress in cherry tomatoes. We investigated FeONPs at three concentrations (FeONP25, FeONP50, FeONP100 mg/kg soil) in pot experiments under non-stress (NS) and salt-alkaline stress (SAS) conditions. SAS conditions decreased biomass and nutrients in untreated plants, a trend reversed by FeONPs. FeONPs treatments significantly boosted pigment levels under SAS, thereby increasing chlorophyll a (10.65–43.05%), chlorophyll b (7.19–41.33%), total chlorophyll (9.84–42.49%), and carotenoids (8.97–36.09%) compared to the control. FeONPs also reduced NPQ under stress, indicating enhanced photosynthetic efficiency. Oxidative stress markers (H2O2, O₂−, and MDA) were strongly induced in control plants but significantly declined with FeONPs treatments. Antioxidants and osmoregulatory substances significantly improved with FeONPs, thereby demonstrating their potential to alleviate SAS in cherry tomato plants.
ISSN:1742-9145
1742-9153