Bifurcation in a Discrete-Time Piecewise Constant Dynamical System

The study of recurrent neural networks with piecewise constant transition or control functions has attracted much attention recently because they can be used to simulate many physical phenomena. A recurrent and discontinuous two-state dynamical system involving a nonnegative bifurcation parameter is...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenmin Hou, Sui Sun Cheng
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/492014
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study of recurrent neural networks with piecewise constant transition or control functions has attracted much attention recently because they can be used to simulate many physical phenomena. A recurrent and discontinuous two-state dynamical system involving a nonnegative bifurcation parameter is studied. By elementary but novel arguments, we are able to give a complete analysis on its asymptotic behavior when the parameter varies from 0 to . It is hoped that our analysis will provide motivation for further results on large-scale recurrent McCulloch-Pitts-type neural networks and piecewise continuous discrete-time dynamical systems.
ISSN:1026-0226
1607-887X