GNSS interference mitigation method based on deep learning

The interference environment faced by GNSS receivers is unknown, dynamic, and uncertain, making it difficult for a single interference mitigation method to address all interference threats. In this paper, we introduce an intelligent interference mitigation approach. By leveraging a deep learning net...

Full description

Saved in:
Bibliographic Details
Main Authors: Feiqiang Chen, Zhe Liu, Long Huang, Yuchen Xie, Binbin Ren, Qin Zhou
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-03-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2025.1535906/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interference environment faced by GNSS receivers is unknown, dynamic, and uncertain, making it difficult for a single interference mitigation method to address all interference threats. In this paper, we introduce an intelligent interference mitigation approach. By leveraging a deep learning network model, our method automatically selects the optimal interference mitigation technique based on the specific characteristics of the interference. This enhances the receiver’s anti-jamming performance and overall robustness. Our experimental results show that the proposed method effectively suppresses narrowband interference, pulse interference, and chirp interference, demonstrating insensitivity to interference parameters. Statistically, it outperforms traditional methods, with the proportion of the carrier-to-noise ratio (C/N0) above a given threshold (initial C/N0 reduced by 3 dB) increasing by over 10%.
ISSN:2296-424X