Holderian functional central limit theorem for linear processes

Let (Xt)t ≥ 1 be a linear process defined by Xt =  ∑i=0∞ψi εt-1 where (ψi, i ≥ 0) is a sequence of  real numbers and (εi , i ∈ Z) is a sequence of random variables with null expectation and variance 1. This paper provides Hölderian FCLT for (Xt)t ≥ 1 with wide class of filters. Filters with ψ(i)...

Full description

Saved in:
Bibliographic Details
Main Author: Mindaugas Juodis
Format: Article
Language:English
Published: Vilnius University Press 2004-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.journals.vu.lt/LMR/article/view/32281
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593183861637120
author Mindaugas Juodis
author_facet Mindaugas Juodis
author_sort Mindaugas Juodis
collection DOAJ
description Let (Xt)t ≥ 1 be a linear process defined by Xt =  ∑i=0∞ψi εt-1 where (ψi, i ≥ 0) is a sequence of  real numbers and (εi , i ∈ Z) is a sequence of random variables with null expectation and variance 1. This paper provides Hölderian FCLT for (Xt)t ≥ 1 with wide class of filters. Filters with ψ(i) = l(i)/i for a slowly varying function l(i) are allowed. The weak convergence of polygonal line process build from sums of (Xt)t ≥ 1 to the standard Brownian motion W in the Hölder space (Hα), 0 < α < 1/2 - 1/τ holds provided the proper noise behavior is satisfied: E|ε1|τ < ∞, τ > 2.
format Article
id doaj-art-41f5bd4ce86a43deb7dacaa656ae1370
institution Kabale University
issn 0132-2818
2335-898X
language English
publishDate 2004-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj-art-41f5bd4ce86a43deb7dacaa656ae13702025-01-20T18:16:15ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2004-12-0144spec.10.15388/LMR.2004.32281Holderian functional central limit theorem for linear processesMindaugas Juodis0Institute of Mathematics and Informatics Let (Xt)t ≥ 1 be a linear process defined by Xt =  ∑i=0∞ψi εt-1 where (ψi, i ≥ 0) is a sequence of  real numbers and (εi , i ∈ Z) is a sequence of random variables with null expectation and variance 1. This paper provides Hölderian FCLT for (Xt)t ≥ 1 with wide class of filters. Filters with ψ(i) = l(i)/i for a slowly varying function l(i) are allowed. The weak convergence of polygonal line process build from sums of (Xt)t ≥ 1 to the standard Brownian motion W in the Hölder space (Hα), 0 < α < 1/2 - 1/τ holds provided the proper noise behavior is satisfied: E|ε1|τ < ∞, τ > 2. https://www.journals.vu.lt/LMR/article/view/32281near convergencelinear processHolder space
spellingShingle Mindaugas Juodis
Holderian functional central limit theorem for linear processes
Lietuvos Matematikos Rinkinys
near convergence
linear process
Holder space
title Holderian functional central limit theorem for linear processes
title_full Holderian functional central limit theorem for linear processes
title_fullStr Holderian functional central limit theorem for linear processes
title_full_unstemmed Holderian functional central limit theorem for linear processes
title_short Holderian functional central limit theorem for linear processes
title_sort holderian functional central limit theorem for linear processes
topic near convergence
linear process
Holder space
url https://www.journals.vu.lt/LMR/article/view/32281
work_keys_str_mv AT mindaugasjuodis holderianfunctionalcentrallimittheoremforlinearprocesses