Characteristics of Peanut Protein-Derived Carbon Dots and Their Application in Cell Imaging and Sensing of Metronidazole

In this paper, peanut protein (PP) was used as the sole raw material for the preparation of fluorescent carbon dots (PP-CDs) by hydrothermal method. The PP-CDs exhibit good dispersibility, spherical-like shapes, and uniform sizes; the average particle size of the PP-CDs was 3.18 ± 0.17 nm. The Fouri...

Full description

Saved in:
Bibliographic Details
Main Authors: Junyan Liao, Zhixiong Hu, Weinong Zhang, Yanpeng Zhang, Jiangrong Xiao, Shenglan Lei
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/13/4/151
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, peanut protein (PP) was used as the sole raw material for the preparation of fluorescent carbon dots (PP-CDs) by hydrothermal method. The PP-CDs exhibit good dispersibility, spherical-like shapes, and uniform sizes; the average particle size of the PP-CDs was 3.18 ± 0.17 nm. The Fourier transform infrared spectroscopy (FTIR) results show that the surface of PP-CDs is rich in hydrophilic groups such as hydroxyl, carboxyl and amide groups. The PP-CDs exhibit good fluorescence emission properties and excitation wavelength dependence, with the optimal excitation wavelength and emission wavelength at 348 nm and 452 nm, respectively. According to the fluorescence quenching effect of metronidazole (MTZ) and tinidazole (TDZ) on PP-CDs, a highly linear fluorescence sensor was established, with a concentration range of 0.10–60.0 µM, and the detection limits of MTZ and TDZ are 32.0 nM and 48.0 nM, respectively. The result of CCK-8 test and imaging of HepG-2 cells and onion epidermal cells reveal that PP-CDs have good membrane permeability, biocompatibility and imaging ability.
ISSN:2227-9040