r-neutrosophic subset of G-submodules
This article explains a particular category of neutrosophic subsets of G-submodules, specifically r-neutrosophic subsets, where r ∈ [0, 1]. The algebra of r-neutrosophic subsets of G-submodules is dis-cussed, along with some fundamental characteristics of their sum. Definitions and theorems related...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
REA Press
2024-06-01
|
Series: | Big Data and Computing Visions |
Subjects: | |
Online Access: | https://www.bidacv.com/article_206030_434e9e42b49d35eff0a794022c497194.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832579289843761152 |
---|---|
author | BINU R |
author_facet | BINU R |
author_sort | BINU R |
collection | DOAJ |
description | This article explains a particular category of neutrosophic subsets of G-submodules, specifically r-neutrosophic subsets, where r ∈ [0, 1]. The algebra of r-neutrosophic subsets of G-submodules is dis-cussed, along with some fundamental characteristics of their sum. Definitions and theorems related to this concept are provided to clarify the properties of an arbitrary non-empty family of r-neutrosophic subsets of G-submodules. |
format | Article |
id | doaj-art-41d5d4cf6ccc490c8f39e8f7cea7feb5 |
institution | Kabale University |
issn | 2783-4956 2821-014X |
language | English |
publishDate | 2024-06-01 |
publisher | REA Press |
record_format | Article |
series | Big Data and Computing Visions |
spelling | doaj-art-41d5d4cf6ccc490c8f39e8f7cea7feb52025-01-30T12:23:27ZengREA PressBig Data and Computing Visions2783-49562821-014X2024-06-014216416910.22105/bdcv.2024.479468.1204206030r-neutrosophic subset of G-submodulesBINU R0Department of Mathematics ,Rajagiri School of Engineering & Technology,Kerala, India.This article explains a particular category of neutrosophic subsets of G-submodules, specifically r-neutrosophic subsets, where r ∈ [0, 1]. The algebra of r-neutrosophic subsets of G-submodules is dis-cussed, along with some fundamental characteristics of their sum. Definitions and theorems related to this concept are provided to clarify the properties of an arbitrary non-empty family of r-neutrosophic subsets of G-submodules.https://www.bidacv.com/article_206030_434e9e42b49d35eff0a794022c497194.pdfneutrosophic setneutrosophic g-submoduler neutrosophic subset of g-submoduleneu-trosophic point |
spellingShingle | BINU R r-neutrosophic subset of G-submodules Big Data and Computing Visions neutrosophic set neutrosophic g-submodule r neutrosophic subset of g-submodule neu-trosophic point |
title | r-neutrosophic subset of G-submodules |
title_full | r-neutrosophic subset of G-submodules |
title_fullStr | r-neutrosophic subset of G-submodules |
title_full_unstemmed | r-neutrosophic subset of G-submodules |
title_short | r-neutrosophic subset of G-submodules |
title_sort | r neutrosophic subset of g submodules |
topic | neutrosophic set neutrosophic g-submodule r neutrosophic subset of g-submodule neu-trosophic point |
url | https://www.bidacv.com/article_206030_434e9e42b49d35eff0a794022c497194.pdf |
work_keys_str_mv | AT binur rneutrosophicsubsetofgsubmodules |