Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

Cadmium sulfide nanoparticles (CdS-n) are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA)...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudia Martínez-Alonso, Carlos A. Rodríguez-Castañeda, Paola Moreno-Romero, C. Selene Coria-Monroy, Hailin Hu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2014/453747
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cadmium sulfide nanoparticles (CdS-n) are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA) or thiourea (TU) as sulfur sources. The obtained CdS-n(TA) showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V) in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene) (P3HT). Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU) could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU) : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.
ISSN:1110-662X
1687-529X