A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool

Abstract Global uncoupled storm‐resolving simulations using the ICOsahedral Non‐hydrostatic (ICON) model with prescribed sea surface temperature (SST) show a double band of precipitation in the Western Pacific, a feature explained by reduced precipitation over the warm pool. Three hypotheses using a...

Full description

Saved in:
Bibliographic Details
Main Authors: H. Segura, C. Bayley, R. Fievét, H. Glöckner, M. Günther, L. Kluft, A. K. Naumann, S. Ortega, D. S. Praturi, M. Rixen, H. Schmidt, M. Winkler, C. Hohenegger, B. Stevens
Format: Article
Language:English
Published: American Geophysical Union (AGU) 2025-07-01
Series:Journal of Advances in Modeling Earth Systems
Subjects:
Online Access:https://doi.org/10.1029/2024MS004897
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850078644533198848
author H. Segura
C. Bayley
R. Fievét
H. Glöckner
M. Günther
L. Kluft
A. K. Naumann
S. Ortega
D. S. Praturi
M. Rixen
H. Schmidt
M. Winkler
C. Hohenegger
B. Stevens
author_facet H. Segura
C. Bayley
R. Fievét
H. Glöckner
M. Günther
L. Kluft
A. K. Naumann
S. Ortega
D. S. Praturi
M. Rixen
H. Schmidt
M. Winkler
C. Hohenegger
B. Stevens
author_sort H. Segura
collection DOAJ
description Abstract Global uncoupled storm‐resolving simulations using the ICOsahedral Non‐hydrostatic (ICON) model with prescribed sea surface temperature (SST) show a double band of precipitation in the Western Pacific, a feature explained by reduced precipitation over the warm pool. Three hypotheses using an energetic framework are advanced to explain the warm pool precipitation bias, and they are related to (a) high‐cloud radiative effect, (b) too‐frequent bottom‐heavy circulation or highly efficient precipitating shallow convection, and (c) surface heat fluxes in light near‐surface winds. Our results show that increasing surface heat fluxes in light near‐surface winds produces more precipitation over the warm pool and a single precipitation band in the Western Pacific. This change increases precipitation over the Indo‐Pacific region, and intensifies the circulation in the tropical Pacific, with more frequent and intense top‐heavy circulation over the warm pool. Simulations with an increased high‐cloud radiative effect do not affect precipitation over the warm pool. According to the energetic framework, this is due to compensation between the radiative effect and both, surface heat fluxes and circulation. Moreover, the representation of shallow convection does not affect warm pool precipitation. Thus, our results show the importance of the feedback between winds, surface heat fluxes, and convection for getting a single oceanic tropical rainbelt in regions of weak SST gradient as the warm pool.
format Article
id doaj-art-41c2a74fb2ef45ed80cf1193dc217c17
institution DOAJ
issn 1942-2466
language English
publishDate 2025-07-01
publisher American Geophysical Union (AGU)
record_format Article
series Journal of Advances in Modeling Earth Systems
spelling doaj-art-41c2a74fb2ef45ed80cf1193dc217c172025-08-20T02:45:30ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662025-07-01177n/an/a10.1029/2024MS004897A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm PoolH. Segura0C. Bayley1R. Fievét2H. Glöckner3M. Günther4L. Kluft5A. K. Naumann6S. Ortega7D. S. Praturi8M. Rixen9H. Schmidt10M. Winkler11C. Hohenegger12B. Stevens13Max Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyAbstract Global uncoupled storm‐resolving simulations using the ICOsahedral Non‐hydrostatic (ICON) model with prescribed sea surface temperature (SST) show a double band of precipitation in the Western Pacific, a feature explained by reduced precipitation over the warm pool. Three hypotheses using an energetic framework are advanced to explain the warm pool precipitation bias, and they are related to (a) high‐cloud radiative effect, (b) too‐frequent bottom‐heavy circulation or highly efficient precipitating shallow convection, and (c) surface heat fluxes in light near‐surface winds. Our results show that increasing surface heat fluxes in light near‐surface winds produces more precipitation over the warm pool and a single precipitation band in the Western Pacific. This change increases precipitation over the Indo‐Pacific region, and intensifies the circulation in the tropical Pacific, with more frequent and intense top‐heavy circulation over the warm pool. Simulations with an increased high‐cloud radiative effect do not affect precipitation over the warm pool. According to the energetic framework, this is due to compensation between the radiative effect and both, surface heat fluxes and circulation. Moreover, the representation of shallow convection does not affect warm pool precipitation. Thus, our results show the importance of the feedback between winds, surface heat fluxes, and convection for getting a single oceanic tropical rainbelt in regions of weak SST gradient as the warm pool.https://doi.org/10.1029/2024MS004897warm pool precipitationlight windssurface heat fluxestropical circulationstorm‐resolving simulations
spellingShingle H. Segura
C. Bayley
R. Fievét
H. Glöckner
M. Günther
L. Kluft
A. K. Naumann
S. Ortega
D. S. Praturi
M. Rixen
H. Schmidt
M. Winkler
C. Hohenegger
B. Stevens
A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
Journal of Advances in Modeling Earth Systems
warm pool precipitation
light winds
surface heat fluxes
tropical circulation
storm‐resolving simulations
title A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
title_full A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
title_fullStr A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
title_full_unstemmed A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
title_short A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
title_sort single tropical rainbelt in global storm resolving models the role of surface heat fluxes over the warm pool
topic warm pool precipitation
light winds
surface heat fluxes
tropical circulation
storm‐resolving simulations
url https://doi.org/10.1029/2024MS004897
work_keys_str_mv AT hsegura asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT cbayley asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT rfievet asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT hglockner asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT mgunther asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT lkluft asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT aknaumann asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT sortega asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT dspraturi asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT mrixen asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT hschmidt asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT mwinkler asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT chohenegger asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT bstevens asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT hsegura singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT cbayley singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT rfievet singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT hglockner singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT mgunther singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT lkluft singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT aknaumann singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT sortega singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT dspraturi singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT mrixen singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT hschmidt singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT mwinkler singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT chohenegger singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool
AT bstevens singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool