A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool
Abstract Global uncoupled storm‐resolving simulations using the ICOsahedral Non‐hydrostatic (ICON) model with prescribed sea surface temperature (SST) show a double band of precipitation in the Western Pacific, a feature explained by reduced precipitation over the warm pool. Three hypotheses using a...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Geophysical Union (AGU)
2025-07-01
|
| Series: | Journal of Advances in Modeling Earth Systems |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2024MS004897 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850078644533198848 |
|---|---|
| author | H. Segura C. Bayley R. Fievét H. Glöckner M. Günther L. Kluft A. K. Naumann S. Ortega D. S. Praturi M. Rixen H. Schmidt M. Winkler C. Hohenegger B. Stevens |
| author_facet | H. Segura C. Bayley R. Fievét H. Glöckner M. Günther L. Kluft A. K. Naumann S. Ortega D. S. Praturi M. Rixen H. Schmidt M. Winkler C. Hohenegger B. Stevens |
| author_sort | H. Segura |
| collection | DOAJ |
| description | Abstract Global uncoupled storm‐resolving simulations using the ICOsahedral Non‐hydrostatic (ICON) model with prescribed sea surface temperature (SST) show a double band of precipitation in the Western Pacific, a feature explained by reduced precipitation over the warm pool. Three hypotheses using an energetic framework are advanced to explain the warm pool precipitation bias, and they are related to (a) high‐cloud radiative effect, (b) too‐frequent bottom‐heavy circulation or highly efficient precipitating shallow convection, and (c) surface heat fluxes in light near‐surface winds. Our results show that increasing surface heat fluxes in light near‐surface winds produces more precipitation over the warm pool and a single precipitation band in the Western Pacific. This change increases precipitation over the Indo‐Pacific region, and intensifies the circulation in the tropical Pacific, with more frequent and intense top‐heavy circulation over the warm pool. Simulations with an increased high‐cloud radiative effect do not affect precipitation over the warm pool. According to the energetic framework, this is due to compensation between the radiative effect and both, surface heat fluxes and circulation. Moreover, the representation of shallow convection does not affect warm pool precipitation. Thus, our results show the importance of the feedback between winds, surface heat fluxes, and convection for getting a single oceanic tropical rainbelt in regions of weak SST gradient as the warm pool. |
| format | Article |
| id | doaj-art-41c2a74fb2ef45ed80cf1193dc217c17 |
| institution | DOAJ |
| issn | 1942-2466 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | American Geophysical Union (AGU) |
| record_format | Article |
| series | Journal of Advances in Modeling Earth Systems |
| spelling | doaj-art-41c2a74fb2ef45ed80cf1193dc217c172025-08-20T02:45:30ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662025-07-01177n/an/a10.1029/2024MS004897A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm PoolH. Segura0C. Bayley1R. Fievét2H. Glöckner3M. Günther4L. Kluft5A. K. Naumann6S. Ortega7D. S. Praturi8M. Rixen9H. Schmidt10M. Winkler11C. Hohenegger12B. Stevens13Max Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyMax Planck Institute for Meteorology Hamburg GermanyAbstract Global uncoupled storm‐resolving simulations using the ICOsahedral Non‐hydrostatic (ICON) model with prescribed sea surface temperature (SST) show a double band of precipitation in the Western Pacific, a feature explained by reduced precipitation over the warm pool. Three hypotheses using an energetic framework are advanced to explain the warm pool precipitation bias, and they are related to (a) high‐cloud radiative effect, (b) too‐frequent bottom‐heavy circulation or highly efficient precipitating shallow convection, and (c) surface heat fluxes in light near‐surface winds. Our results show that increasing surface heat fluxes in light near‐surface winds produces more precipitation over the warm pool and a single precipitation band in the Western Pacific. This change increases precipitation over the Indo‐Pacific region, and intensifies the circulation in the tropical Pacific, with more frequent and intense top‐heavy circulation over the warm pool. Simulations with an increased high‐cloud radiative effect do not affect precipitation over the warm pool. According to the energetic framework, this is due to compensation between the radiative effect and both, surface heat fluxes and circulation. Moreover, the representation of shallow convection does not affect warm pool precipitation. Thus, our results show the importance of the feedback between winds, surface heat fluxes, and convection for getting a single oceanic tropical rainbelt in regions of weak SST gradient as the warm pool.https://doi.org/10.1029/2024MS004897warm pool precipitationlight windssurface heat fluxestropical circulationstorm‐resolving simulations |
| spellingShingle | H. Segura C. Bayley R. Fievét H. Glöckner M. Günther L. Kluft A. K. Naumann S. Ortega D. S. Praturi M. Rixen H. Schmidt M. Winkler C. Hohenegger B. Stevens A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool Journal of Advances in Modeling Earth Systems warm pool precipitation light winds surface heat fluxes tropical circulation storm‐resolving simulations |
| title | A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool |
| title_full | A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool |
| title_fullStr | A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool |
| title_full_unstemmed | A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool |
| title_short | A Single Tropical Rainbelt in Global Storm‐Resolving Models: The Role of Surface Heat Fluxes Over the Warm Pool |
| title_sort | single tropical rainbelt in global storm resolving models the role of surface heat fluxes over the warm pool |
| topic | warm pool precipitation light winds surface heat fluxes tropical circulation storm‐resolving simulations |
| url | https://doi.org/10.1029/2024MS004897 |
| work_keys_str_mv | AT hsegura asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT cbayley asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT rfievet asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT hglockner asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT mgunther asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT lkluft asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT aknaumann asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT sortega asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT dspraturi asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT mrixen asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT hschmidt asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT mwinkler asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT chohenegger asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT bstevens asingletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT hsegura singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT cbayley singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT rfievet singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT hglockner singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT mgunther singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT lkluft singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT aknaumann singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT sortega singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT dspraturi singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT mrixen singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT hschmidt singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT mwinkler singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT chohenegger singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool AT bstevens singletropicalrainbeltinglobalstormresolvingmodelstheroleofsurfaceheatfluxesoverthewarmpool |