Finite-Time and Fixed-Time Synchronization of Memristor-Based Cohen–Grossberg Neural Networks via a Unified Control Strategy
This article focuses on the problem of finite-time and fixed-time synchronization for Cohen–Grossberg neural networks (CGNNs) with time-varying delays and memristor connection weights. First, through a nonlinear transformation, an alternative system is derived from the Cohen–Grossberg memristor-base...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/4/630 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article focuses on the problem of finite-time and fixed-time synchronization for Cohen–Grossberg neural networks (CGNNs) with time-varying delays and memristor connection weights. First, through a nonlinear transformation, an alternative system is derived from the Cohen–Grossberg memristor-based neural networks (MCGNNs) considered. Then, under the framework of the Filippov solution and by adjusting a key control parameter, some novel and effective criteria are obtained to ensure finite-time or fixed-time synchronization of the alternative networks via the unified control framework and under the same conditions. Furthermore, the two types of synchronization criteria are derived from the considered MCGNNs. Finally, some numerical simulations are presented to test the validity of these theoretical conclusions. |
|---|---|
| ISSN: | 2227-7390 |