Finite-Time and Fixed-Time Synchronization of Memristor-Based Cohen–Grossberg Neural Networks via a Unified Control Strategy

This article focuses on the problem of finite-time and fixed-time synchronization for Cohen–Grossberg neural networks (CGNNs) with time-varying delays and memristor connection weights. First, through a nonlinear transformation, an alternative system is derived from the Cohen–Grossberg memristor-base...

Full description

Saved in:
Bibliographic Details
Main Authors: Mei Liu, Binglong Lu, Jinling Wang, Haijun Jiang, Cheng Hu
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/4/630
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article focuses on the problem of finite-time and fixed-time synchronization for Cohen–Grossberg neural networks (CGNNs) with time-varying delays and memristor connection weights. First, through a nonlinear transformation, an alternative system is derived from the Cohen–Grossberg memristor-based neural networks (MCGNNs) considered. Then, under the framework of the Filippov solution and by adjusting a key control parameter, some novel and effective criteria are obtained to ensure finite-time or fixed-time synchronization of the alternative networks via the unified control framework and under the same conditions. Furthermore, the two types of synchronization criteria are derived from the considered MCGNNs. Finally, some numerical simulations are presented to test the validity of these theoretical conclusions.
ISSN:2227-7390