A Compact Real-Time PCR System for Point-of-Care Detection Using a PCB-Based Disposable Chip and Open-Platform CMOS Camera

We present a compact and cost-effective real-time PCR system designed for point-of-care testing (POCT), utilizing a PCB-based disposable chip and an open-platform CMOS camera. The system integrates precise thermal cycling with software-synchronized fluorescence detection and provides real-time analy...

Full description

Saved in:
Bibliographic Details
Main Authors: MinGin Kim, Sung-Hun Yun, Sun-Hee Kim, Jong-Dae Kim
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3159
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a compact and cost-effective real-time PCR system designed for point-of-care testing (POCT), utilizing a PCB-based disposable chip and an open-platform CMOS camera. The system integrates precise thermal cycling with software-synchronized fluorescence detection and provides real-time analysis through a dedicated user interface. To minimize cost and complexity, a polycarbonate reaction chamber was integrated with a PCB-based heater and thermistor. A slanted LED illumination setup and an open-platform USB camera were employed for fluorescence imaging. Signal alignment was enhanced using device-specific region-of-interest (ROI) tracking based on copper pad corner detection. Thermal cycling performance achieved a heating rate of 8.0 °C/s and a cooling rate of −9.3 °C/s, with steady-state accuracy within ±0.1 °C. Fluorescence images exhibited high dynamic range without saturation, and the 3σ-based ROI correction method improved signal reliability. System performance was validated using <i>Chlamydia trachomatis</i> DNA standard (10<sup>3</sup> copies), yielding consistent amplification curves with a Ct standard deviation below 0.3 cycles. These results demonstrate that the proposed system enables rapid, accurate, and reproducible nucleic acid detection, making it a strong candidate for field-deployable molecular diagnostics.
ISSN:1424-8220