Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication
Conceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the fronthaul. At fre...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Fibers |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-6439/13/4/39 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850183536110206976 |
|---|---|
| author | Cheng-Kai Yao Hsin-Piao Lin Chiun-Lang Cheng Ming-An Chung Yu-Shian Lin Wen-Bo Wu Chun-Wei Chiang Peng-Chun Peng |
| author_facet | Cheng-Kai Yao Hsin-Piao Lin Chiun-Lang Cheng Ming-An Chung Yu-Shian Lin Wen-Bo Wu Chun-Wei Chiang Peng-Chun Peng |
| author_sort | Cheng-Kai Yao |
| collection | DOAJ |
| description | Conceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the fronthaul. At frequencies exceeding 24 GHz, the transmission reach of 5G/6G beamforming is limited to a few hundred meters, and the periphery area of the sector operational range of beamforming introduces a communication blind spot. Using FSOs as the backhaul and a fiber-optic link as the fronthaul, O-RAN empowers the radio unit to extend over greater distances to supplement the communication range that mmW beamforming cannot adequately cover. Notably, O-RAN is a prime example of next-generation wireless networks renowned for their adaptability and open architecture to enhance the cost-effectiveness of this integration. A 200 meter-long FSO link for backhaul and a fiber-optic link of up to 10 km for fronthaul were erected, thereby enabling the reach of communication services from urban centers to suburban and remote rural areas. Furthermore, in the context of beamforming, reinforcement learning (RL) was employed to optimize the error vector magnitude (EVM) by dynamically adjusting the beamforming phase based on the communication user’s location. In summary, the integration of RL-based mmW beamforming with the proposed O-RAN communication setup is operational. It lends scalability and cost-effectiveness to current and future communication infrastructures in urban, peri-urban, and rural areas. |
| format | Article |
| id | doaj-art-4160f59e06d34afb96f33d135e27cfa2 |
| institution | OA Journals |
| issn | 2079-6439 |
| language | English |
| publishDate | 2025-04-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Fibers |
| spelling | doaj-art-4160f59e06d34afb96f33d135e27cfa22025-08-20T02:17:20ZengMDPI AGFibers2079-64392025-04-011343910.3390/fib13040039Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G CommunicationCheng-Kai Yao0Hsin-Piao Lin1Chiun-Lang Cheng2Ming-An Chung3Yu-Shian Lin4Wen-Bo Wu5Chun-Wei Chiang6Peng-Chun Peng7Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, TaiwanDepartment of Electronic Engineering, National Taipei University of Technology, Taipei 10608, TaiwanDivision of Ground Communication, Taiwan Space Agency, Hsinchu 30078, TaiwanDepartment of Electronic Engineering, National Taipei University of Technology, Taipei 10608, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, TaiwanConceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the fronthaul. At frequencies exceeding 24 GHz, the transmission reach of 5G/6G beamforming is limited to a few hundred meters, and the periphery area of the sector operational range of beamforming introduces a communication blind spot. Using FSOs as the backhaul and a fiber-optic link as the fronthaul, O-RAN empowers the radio unit to extend over greater distances to supplement the communication range that mmW beamforming cannot adequately cover. Notably, O-RAN is a prime example of next-generation wireless networks renowned for their adaptability and open architecture to enhance the cost-effectiveness of this integration. A 200 meter-long FSO link for backhaul and a fiber-optic link of up to 10 km for fronthaul were erected, thereby enabling the reach of communication services from urban centers to suburban and remote rural areas. Furthermore, in the context of beamforming, reinforcement learning (RL) was employed to optimize the error vector magnitude (EVM) by dynamically adjusting the beamforming phase based on the communication user’s location. In summary, the integration of RL-based mmW beamforming with the proposed O-RAN communication setup is operational. It lends scalability and cost-effectiveness to current and future communication infrastructures in urban, peri-urban, and rural areas.https://www.mdpi.com/2079-6439/13/4/39fiber/FSOs communicationopen radio access networkmmW beamforming |
| spellingShingle | Cheng-Kai Yao Hsin-Piao Lin Chiun-Lang Cheng Ming-An Chung Yu-Shian Lin Wen-Bo Wu Chun-Wei Chiang Peng-Chun Peng Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication Fibers fiber/FSOs communication open radio access network mmW beamforming |
| title | Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication |
| title_full | Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication |
| title_fullStr | Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication |
| title_full_unstemmed | Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication |
| title_short | Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication |
| title_sort | fiber free space optics with open radio access networks supplements the coverage of millimeter wave beamforming for future 5g and 6g communication |
| topic | fiber/FSOs communication open radio access network mmW beamforming |
| url | https://www.mdpi.com/2079-6439/13/4/39 |
| work_keys_str_mv | AT chengkaiyao fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT hsinpiaolin fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT chiunlangcheng fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT minganchung fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT yushianlin fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT wenbowu fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT chunweichiang fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication AT pengchunpeng fiberfreespaceopticswithopenradioaccessnetworkssupplementsthecoverageofmillimeterwavebeamformingforfuture5gand6gcommunication |