Analysis of prognostic factors and nomogram construction for postoperative survival of triple-negative breast cancer

IntroductionTriple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype associated with poor prognosis and limited treatment options. This study utilized the SEER database to investigate clinicopathologic characteristics and prognostic factors in TNBC patients.MethodsMachine le...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenxi Wang, Xiangqian Zhao, Dawei Wang, Jinyun Wu, Jizhen Lin, Weiwei Huang, Yangkun Shen, Qi Chen
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-04-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2025.1561563/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:IntroductionTriple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype associated with poor prognosis and limited treatment options. This study utilized the SEER database to investigate clinicopathologic characteristics and prognostic factors in TNBC patients.MethodsMachine learning algorithms specifically Gradient Boosting Machines (XGBoost) and Random Forest classifiers were applied to develop survival prediction models and identify key prognostic markers.ResultsResults indicated significant predictors of survival, including tumor size, lymph node involvement, and distant metastases. Our proposed work showed better predictive performance, with a C-index of 0.8544 and AUC-ROC values of 0.9008 and 0.8344 for one year and three year overall survival predictions. Major predictors of survival comprises tumor size, HR is 3.657 for T4, lymph node involvement, HR is 3.018 for N3, distant metastases, HR is 1.743 for M1, and prior treatments includes surgery, HR is 0.298, chemotherapy, HR is 0.442, and radiotherapy, HR is 0.607.DiscussionThe findings emphasize the clinical utility of AI-driven models in improving TNBC prognosis and guiding personalized treatment strategies. This study provides novel insights into the survival dynamics of TNBC patients and underscores the potential of predictive analytics in oncology.
ISSN:1664-3224