One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity
Nitrogen-doped TiO2 nanotubes with enhanced visible light photocatalytic activity have been synthesized using commercial titania P25 as raw material by a facile P25/urea cohydrothermal method. Morphological and microstructural characteristics were conducted by transmission electron microscopy, powde...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2012/391958 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nitrogen-doped TiO2 nanotubes with enhanced visible light photocatalytic activity have been synthesized using commercial titania P25 as raw material by a facile P25/urea cohydrothermal method. Morphological and microstructural characteristics were conducted by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption/desorption isotherms; chemical identifications were performed using X-ray photoelectron spectroscopy, and the interstitial nitrogen linkage to the TiO2 nanotubes is identified. The photocatalytic activity of nitrogen-doped TiO2 nanotubes, evaluated by the decomposition of rhodamine B dye solution under visible light using UV-vis absorption spectroscopy, is found to exhibit ~ four times higher than that of P25 and undoped titanate nanotubes. Factors affecting the photocatalytic activity are analyzed; it is found that the nitrogen content and surface area, rather than the crystallinity, are more crucial in affecting the photocatalytic efficiency of the nitrogen-doped TiO2 nanotubes. |
---|---|
ISSN: | 1110-662X 1687-529X |