Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data

IntroductionThe availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea Angarita-Rodríguez, Nicolás Mendoza-Mejía, Janneth González, Jason Papin, Andrés Felipe Aristizábal, Andrés Pinzón
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-01-01
Series:Frontiers in Systems Biology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fsysb.2024.1500710/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:IntroductionThe availability of large-scale multi-omic data has revolution-ized the study of cellular machinery, enabling a systematic understanding of biological processes. However, the integration of these datasets into Genome-Scale Models of Metabolism (GEMs) re-mains underexplored. Existing methods often link transcriptome and proteome data independently to reaction boundaries, providing models with estimated maximum reaction rates based on individual datasets. This independent approach, however, introduces uncertainties and inaccuracies.MethodsTo address these challenges, we applied a principal component analysis (PCA)-based approach to integrate transcriptome and proteome data. This method facilitates the reconstruction of context-specific models grounded in multi-omics data, enhancing their biological relevance and predictive capacity.ResultsUsing this approach, we successfully reconstructed an astrocyte GEM with improved prediction capabilities compared to state-of-the-art models available in the literature.DiscussionThese advancements underscore the potential of multi-omic inte-gration to refine metabolic modeling and its critical role in studying neurodegeneration and developing effective therapies.
ISSN:2674-0702