Binding Energies and Dissociation Temperatures of Heavy Quarkonia at Finite Temperature and Chemical Potential in the N-Dimensional Space

The N-dimensional radial Schrödinger equation has been solved using the analytical exact iteration method (AEIM), in which the Cornell potential is generalized to finite temperature and chemical potential. The energy eigenvalues have been calculated in the N-dimensional space for any state. The pres...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Abu-Shady, T. A. Abdel-Karim, E. M. Khokha
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2018/7356843
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The N-dimensional radial Schrödinger equation has been solved using the analytical exact iteration method (AEIM), in which the Cornell potential is generalized to finite temperature and chemical potential. The energy eigenvalues have been calculated in the N-dimensional space for any state. The present results have been applied for studying quarkonium properties such as charmonium and bottomonium masses at finite temperature and quark chemical potential. The binding energies and the mass spectra of heavy quarkonia are studied in the N-dimensional space. The dissociation temperatures for different states of heavy quarkonia are calculated in the three-dimensional space. The influence of dimensionality number (N) has been discussed on the dissociation temperatures. In addition, the energy eigenvalues are only valid for nonzero temperature at any value of quark chemical potential. A comparison is studied with other recent works. We conclude that the AEIM succeeds in predicting the heavy quarkonium at finite temperature and quark chemical potential in comparison with recent works.
ISSN:1687-7357
1687-7365