Quantum SWAP gate realized with CZ and iSWAP gates in a superconducting architecture
It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not present in existing platforms. In particular, access to a gate set that includes support for the CZ-, iSWAP-, and SWAP-type fam...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | New Journal of Physics |
| Subjects: | |
| Online Access: | https://doi.org/10.1088/1367-2630/adeba7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not present in existing platforms. In particular, access to a gate set that includes support for the CZ-, iSWAP-, and SWAP-type families of gates renders conversions between these gate families unnecessary during compilation, as any two-qubit Clifford gate can be executed using at most one two-qubit gate from this set, plus additional single-qubit gates. We experimentally demonstrate that a SWAP gate can be decomposed into one iSWAP gate followed by one CZ gate, affirming a more efficient compilation strategy over the conventional approach that relies on three iSWAP or three CZ gates to replace a SWAP gate. Our implementation makes use of a superconducting quantum processor design based on fixed-frequency transmon qubits coupled together by a parametrically modulated tunable transmon coupler, extending this platform’s native gate set so that any two-qubit Clifford unitary matrix can be realized using no more than two two-qubit gates and single-qubit gates. |
|---|---|
| ISSN: | 1367-2630 |