Identical Neighbor Structure: Effects on Spectrum and Independence in <i>CN</i><sub>s</sub> Cartesian Product of Graphs
In this study, we introduced a novel graph product derived from the standard Cartesian product and investigated its structural properties, with a particular emphasis on its independence number and spectral characteristics in relation to identical neighbor structures. A key finding is that the spectr...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/7/1040 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, we introduced a novel graph product derived from the standard Cartesian product and investigated its structural properties, with a particular emphasis on its independence number and spectral characteristics in relation to identical neighbor structures. A key finding is that the spectrum of this newly defined product graph consists entirely of integral eigenvalues, a significant property with applications in chemistry, network theory, and combinatorial optimization. We defined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> vertices as the vertices having an identical set of neighbors and classified graphs containing such vertices as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> graphs. Furthermore, we introduced the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> Cartesian product for these graphs. To formally characterize the relationships between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> vertices, we constructed an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> matrix, where an entry is 1 if the corresponding pair of vertices are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> vertices and 0 otherwise. Utilizing this matrix, we established that the spectrum of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>N</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> Cartesian product consists exclusively of integral eigenvalues. This finding enhances our understanding of graph spectra and their relation to structural properties. |
|---|---|
| ISSN: | 2227-7390 |