Common Food-Wrap Film as a Cost-Effective and Readily Available Alternative to Thermoplastic Polyurethane (TPU) Membranes for Microfluidic On-Chip Valves and Pumps
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplas...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/6/657 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a fast, automated method for fabricating rigid microfluidic components, integrating flexible elements like valves and pumps remains a key challenge. Thermoplastic polyurethane (TPU) membranes have been adopted to address this need but are costly and difficult to procure reliably. In this study, we present commercial food-wrap film (FWF) as a low-cost, widely available alternative membrane material. We demonstrate FWF’s compatibility with laser-cut thermoplastic microfluidic devices by successfully fabricating Quake-style valves and peristaltic pumps. FWF valves maintained reliable sealing at 40 psi, maintained stable flow rates of ~1.33 μL/min during peristaltic operation, and sustained over one million continuous actuation cycles without performance degradation. Burst pressure testing confirmed robustness up to 60 psi. Additionally, FWF’s thermal resistance up to 140 °C enabled effective thermal bonding with PMMA layers, simplifying device assembly. These results establish FWF as a viable substitute for TPU membranes, offering an accessible and scalable solution for microfluidic device fabrication, particularly in resource-limited settings where TPU availability is constrained. |
|---|---|
| ISSN: | 2072-666X |