Glucuronoxylan hemicellulose-based manganese oxide nanoparticles for enhanced bactericidal, wound healing, and photocatalytic potential
Hemicelluloses are promising candidates for synthesizing nanosystems for potential biomedical and photocatalytic applications. Glucuronoxylan (hemicellulose)-capped manganese oxide nanoparticles (GX-MnO NPs) were synthesized from quince ( Cydonia oblonga M.) seed hydrogel. Ultraviolet-visible spectr...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SAGE Publishing
2025-04-01
|
| Series: | Journal of Applied Biomaterials & Functional Materials |
| Online Access: | https://doi.org/10.1177/22808000251328937 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Hemicelluloses are promising candidates for synthesizing nanosystems for potential biomedical and photocatalytic applications. Glucuronoxylan (hemicellulose)-capped manganese oxide nanoparticles (GX-MnO NPs) were synthesized from quince ( Cydonia oblonga M.) seed hydrogel. Ultraviolet-visible spectroscopic analysis revealed a distinct surface plasmon resonance peak at 310 nm for MnO NPs, with an estimated band gap energy of 2.60 eV. The interactions between MnO NPs and the functional groups of hydrogel were characterized using Fourier-transform infrared spectroscopy, while the cubic structure was evident from X-ray diffraction results at 2θ location. Scanning electron microscopy showed that the NPs had a roughly spherical shape with an average size of 38.5 nm. Energy-dispersive X-ray spectrum indicated the sample’s composition, highlighting a significant presence of manganese (39.29%), oxygen (29.3%), and minor elements from hydrogel. The NPs displayed noteworthy in vitro antibacterial and antibiofilm activities against Bacillus licheniformis , Escherichia coli , and Aeromonas . An in vivo wound healing experiment illustrated that wounds treated with GX-MnO NPs healed entirely within 10 days in albino mice. Further, GX-MnO NPs served as an excellent photocatalytic system in the sunlight-assisted degradation of methylene blue (90.5%) and methyl orange (89.7%). Intriguingly, degradation efficiencies of 47.6% and 45.7% were achieved, respectively, when the NPs were operated in the dark. Thus, the study suggests GX-MnO NPs as versatile and promising agents to address biomedical and dye-contaminated wastewater concerns. |
|---|---|
| ISSN: | 2280-8000 |