Dual Connectivity in Graphs

An edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed A. Mutar, Daniele Ettore Otera, Hasan A. Khawwan
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/229
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588051834994688
author Mohammed A. Mutar
Daniele Ettore Otera
Hasan A. Khawwan
author_facet Mohammed A. Mutar
Daniele Ettore Otera
Hasan A. Khawwan
author_sort Mohammed A. Mutar
collection DOAJ
description An edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists a rainbow path connecting any pair of vertices. In contrast, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is monochromatic if there is a monochromatic path between any two vertices. Some graphs can admit a coloring which is simultaneously rainbow and monochromatic; for instance, any coloring of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>n</mi></msub></semantics></math></inline-formula> is rainbow and monochromatic. This paper refers to such a coloring as dual coloring. We investigate dual coloring on various graphs and raise some questions about the sufficient conditions for connected graphs to be dual connected.
format Article
id doaj-art-405daff90e4842f3bfe9763cc532041e
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-405daff90e4842f3bfe9763cc532041e2025-01-24T13:39:49ZengMDPI AGMathematics2227-73902025-01-0113222910.3390/math13020229Dual Connectivity in GraphsMohammed A. Mutar0Daniele Ettore Otera1Hasan A. Khawwan2Department of Mathematics, College of Science, University of Al Qadisiyah, Diwaniyah 58001, IraqInstitute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, 08412 Vilnius, LithuaniaEducation Directorate of Al-Qadisiyah, Diwaniyah 58001, IraqAn edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists a rainbow path connecting any pair of vertices. In contrast, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is monochromatic if there is a monochromatic path between any two vertices. Some graphs can admit a coloring which is simultaneously rainbow and monochromatic; for instance, any coloring of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>n</mi></msub></semantics></math></inline-formula> is rainbow and monochromatic. This paper refers to such a coloring as dual coloring. We investigate dual coloring on various graphs and raise some questions about the sufficient conditions for connected graphs to be dual connected.https://www.mdpi.com/2227-7390/13/2/229edge coloringrainbow coloringmonochromatic coloringdual connected graphs
spellingShingle Mohammed A. Mutar
Daniele Ettore Otera
Hasan A. Khawwan
Dual Connectivity in Graphs
Mathematics
edge coloring
rainbow coloring
monochromatic coloring
dual connected graphs
title Dual Connectivity in Graphs
title_full Dual Connectivity in Graphs
title_fullStr Dual Connectivity in Graphs
title_full_unstemmed Dual Connectivity in Graphs
title_short Dual Connectivity in Graphs
title_sort dual connectivity in graphs
topic edge coloring
rainbow coloring
monochromatic coloring
dual connected graphs
url https://www.mdpi.com/2227-7390/13/2/229
work_keys_str_mv AT mohammedamutar dualconnectivityingraphs
AT danieleettoreotera dualconnectivityingraphs
AT hasanakhawwan dualconnectivityingraphs