Dual Connectivity in Graphs

An edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed A. Mutar, Daniele Ettore Otera, Hasan A. Khawwan
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/229
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists a rainbow path connecting any pair of vertices. In contrast, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is monochromatic if there is a monochromatic path between any two vertices. Some graphs can admit a coloring which is simultaneously rainbow and monochromatic; for instance, any coloring of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>n</mi></msub></semantics></math></inline-formula> is rainbow and monochromatic. This paper refers to such a coloring as dual coloring. We investigate dual coloring on various graphs and raise some questions about the sufficient conditions for connected graphs to be dual connected.
ISSN:2227-7390