Dual Connectivity in Graphs
An edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/2/229 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An edge-coloring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of a connected graph <i>G</i> is called rainbow if there exists a rainbow path connecting any pair of vertices. In contrast, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is monochromatic if there is a monochromatic path between any two vertices. Some graphs can admit a coloring which is simultaneously rainbow and monochromatic; for instance, any coloring of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>n</mi></msub></semantics></math></inline-formula> is rainbow and monochromatic. This paper refers to such a coloring as dual coloring. We investigate dual coloring on various graphs and raise some questions about the sufficient conditions for connected graphs to be dual connected. |
---|---|
ISSN: | 2227-7390 |