A combined risk model shows viability for personalized breast cancer risk assessment in the Indonesian population: A case/control study.
Breast cancer remains a significant concern worldwide, with a rising incidence in Indonesia. This study aims to evaluate the applicability of risk-based screening approaches in the Indonesian demographic through a case-control study involving 305 women. We developed a personalized breast cancer risk...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0321545 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Breast cancer remains a significant concern worldwide, with a rising incidence in Indonesia. This study aims to evaluate the applicability of risk-based screening approaches in the Indonesian demographic through a case-control study involving 305 women. We developed a personalized breast cancer risk assessment workflow that integrates multiple risk factors, including clinical (Gail) and polygenic (Mavaddat) risk predictions, into a consolidated risk category. By evaluating the area under the receiver operating characteristic curve (AUC) of each single-factor risk model, we demonstrated that they retained their predictive accuracy in the Indonesian context (AUC for clinical risk: 0.67 [0.61,0.74]; AUC for genetic risk: 0.67 [0.61,0.73]). Notably, our combined risk approach enhanced the AUC to 0.70 [0.64,0.76], highlighting the advantages of a multifaceted model. Our findings demonstrate for the first time the applicability of the Mavaddat and Gail models to Indonesian populations, and show that within this demographic, combined risk models provide a superior predictive framework compared to single-factor approaches. |
|---|---|
| ISSN: | 1932-6203 |