Towards a New MAX-DOAS Measurement Site in the Po Valley: Aerosol Optical Depth and NO<sub>2</sub> Tropospheric VCDs

Pollutants information can be retrieved from visible (VIS) and ultraviolet (UV) diffuse solar spectra exploiting Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments. In May 2021, the Italian research institute CNR-ISAC acquired and deployed a MAX-DOAS system SkySpec-2D. It...

Full description

Saved in:
Bibliographic Details
Main Authors: Elisa Castelli, Paolo Pettinari, Enzo Papandrea, Margherita Premuda, Andrè Achilli, Andreas Richter, Tim Bösch, Francois Hendrick, Caroline Fayt, Steffen Beirle, Martina M. Friedrich, Michel Van Roozendael, Thomas Wagner, Massimo Valeri
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/6/1035
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pollutants information can be retrieved from visible (VIS) and ultraviolet (UV) diffuse solar spectra exploiting Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments. In May 2021, the Italian research institute CNR-ISAC acquired and deployed a MAX-DOAS system SkySpec-2D. It is located in the “Giorgio Fea” observatory in San Pietro Capofiume (SPC), in the middle of the Po Valley, where it has constantly acquired zenith and off-axis diffuse solar spectra since the 1st October 2021. This work presents the retrieved tropospheric NO<sub>2</sub> and aerosol extinction profiles (and their columns) derived from the MAX-DOAS measurements using the newly developed DEAP retrieval code. The code has been validated both using synthetic differential Slant Column Densities (dSCDs) from the Fiducial Reference Measurements for Ground-Based DOAS Air-Quality Observations (FRM4DOAS) project and real measured data. For this purpose, DEAP results are compared with the ones obtained with three state-of-the-art retrieval codes. In addition, an inter-comparison with satellite products from Sentinel-5P TROPOMI, for the tropospheric NO<sub>2</sub> Vertical Column Densities (VCDs), and MODIS-MAIAC for the tropospheric Aerosol Optical Depth (AOD), is performed. We find a bias of −0.6 × 10<sup>15</sup> molec/cm<sup>2</sup> with a standard deviation of 1.8 × 10<sup>15</sup> molec/cm<sup>2</sup> with respect to Sentinel-5P TROPOMI for NO<sub>2</sub> tropospheric VCDs and of 0.04 ± 0.08 for AOD with respect to MODIS-MAIAC data. The retrieved data show that the SPC measurement site is representative of the background pollution conditions of the Po Valley. For this reason, it is a good candidate for satellite validation and scientific studies over the Po Valley.
ISSN:2072-4292