On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures

The Jordan–Hölder theorem is proved by using Zassenhaus lemma which is a generalization of the Second Isomorphism Theorem for groups. Goursat’s lemma is a generalization of Zassenhaus lemma, it is an algebraic theorem for characterizing subgroups of the direct product of two groups G1×G2, and it inv...

Full description

Saved in:
Bibliographic Details
Main Authors: Fanning Meng, Junhui Guo
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2022/7705500
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850217319300595712
author Fanning Meng
Junhui Guo
author_facet Fanning Meng
Junhui Guo
author_sort Fanning Meng
collection DOAJ
description The Jordan–Hölder theorem is proved by using Zassenhaus lemma which is a generalization of the Second Isomorphism Theorem for groups. Goursat’s lemma is a generalization of Zassenhaus lemma, it is an algebraic theorem for characterizing subgroups of the direct product of two groups G1×G2, and it involves isomorphisms between quotient groups of subgroups of G1 and G2. In this paper, we first extend Goursat’s lemma to R-algebras, i.e., give the version of Goursat’s lemma for algebras, and then generalize Zassenhaus lemma to rings, R-modules, and R-algebras by using the corresponding Goursat’s lemma, i.e., give the versions of Zassenhaus lemma for rings, R-modules, and R-algebras, respectively.
format Article
id doaj-art-3fb91d4d7cb440dd88441839f5b07450
institution OA Journals
issn 2314-4785
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-3fb91d4d7cb440dd88441839f5b074502025-08-20T02:08:04ZengWileyJournal of Mathematics2314-47852022-01-01202210.1155/2022/7705500On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic StructuresFanning Meng0Junhui Guo1School of Mathematics and Information ScienceSchool of Mathematics and Information ScienceThe Jordan–Hölder theorem is proved by using Zassenhaus lemma which is a generalization of the Second Isomorphism Theorem for groups. Goursat’s lemma is a generalization of Zassenhaus lemma, it is an algebraic theorem for characterizing subgroups of the direct product of two groups G1×G2, and it involves isomorphisms between quotient groups of subgroups of G1 and G2. In this paper, we first extend Goursat’s lemma to R-algebras, i.e., give the version of Goursat’s lemma for algebras, and then generalize Zassenhaus lemma to rings, R-modules, and R-algebras by using the corresponding Goursat’s lemma, i.e., give the versions of Zassenhaus lemma for rings, R-modules, and R-algebras, respectively.http://dx.doi.org/10.1155/2022/7705500
spellingShingle Fanning Meng
Junhui Guo
On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures
Journal of Mathematics
title On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures
title_full On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures
title_fullStr On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures
title_full_unstemmed On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures
title_short On the Extensions of Zassenhaus Lemma and Goursat’s Lemma to Algebraic Structures
title_sort on the extensions of zassenhaus lemma and goursat s lemma to algebraic structures
url http://dx.doi.org/10.1155/2022/7705500
work_keys_str_mv AT fanningmeng ontheextensionsofzassenhauslemmaandgoursatslemmatoalgebraicstructures
AT junhuiguo ontheextensionsofzassenhauslemmaandgoursatslemmatoalgebraicstructures