Ultrapotent SARS coronavirus-neutralizing single-domain antibodies that clamp the spike at its base
Abstract Therapeutic monoclonal antibodies can prevent severe disease in SARS-CoV-2 exposed individuals. However, currently circulating virus variants have evolved to gain significant resistance to nearly all neutralizing human immune system-derived therapeutic monoclonal antibodies that had previou...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60250-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Therapeutic monoclonal antibodies can prevent severe disease in SARS-CoV-2 exposed individuals. However, currently circulating virus variants have evolved to gain significant resistance to nearly all neutralizing human immune system-derived therapeutic monoclonal antibodies that had previously been emergency-authorized for use in the clinic. Here, we describe the discovery of a panel of single-domain antibodies (VHHs) directed against the spike protein S2 subunit that broadly neutralize SARS-CoV-1 and −2 with unusually high potency. One of these VHHs tightly clamps the spike’s monomers at a highly conserved, quaternary epitope in the membrane proximal part of the trimeric Heptad Repeat 2 (HR2) coiled-coil, thereby locking the HR2 in its prefusion conformation. Low dose systemic administration of a VHH-human IgG1 Fc fusion prevented SARS-CoV-2 infection in two animal models. Pseudovirus escape selection experiments demonstrate that the very rare escape variants are rendered almost non-infectious. This VHH-based antibody with a highly potent mechanism of antiviral action forms the basis for a new class of pan-sarbecovirus neutralizing biologics, which are currently under development. In addition, the unique quaternary binding mode of the VHHs to the prefusion HR2 could be exploited for other class I fusion proteins. |
|---|---|
| ISSN: | 2041-1723 |