Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling

This study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">&...

Full description

Saved in:
Bibliographic Details
Main Authors: Hassan Abboudi, Walid Belaid, Redouane En-nadir, Ilyass Ez-zejjari, Mohammed Zouini, Ahmed Sali, Haddou El Ghazi
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/15/7/633
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849419209508913152
author Hassan Abboudi
Walid Belaid
Redouane En-nadir
Ilyass Ez-zejjari
Mohammed Zouini
Ahmed Sali
Haddou El Ghazi
author_facet Hassan Abboudi
Walid Belaid
Redouane En-nadir
Ilyass Ez-zejjari
Mohammed Zouini
Ahmed Sali
Haddou El Ghazi
author_sort Hassan Abboudi
collection DOAJ
description This study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.6</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.4</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, an intrinsic i-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.52</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.48</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, and an n-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.48</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.52</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer. A systematic parametric optimization methodology was employed, involving a sequential investigation of doping concentrations, layer thicknesses, and indium composition to identify the optimal device configuration. Initial optimization of doping levels established optimal concentrations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">d</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>16</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the p-layer and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">a</mi></mrow></msub><mo>=</mo><mn>8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>17</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the n-layer. Subsequently, structural parameters were optimized through systematic variation of layer thicknesses while maintaining optimal doping concentrations. The comprehensive optimization culminated in the identification of an optimal device architecture featuring a p-type layer thickness of 0.2 μm, an intrinsic layer thickness of 0.4 μm, an n-type layer thickness of 0.06 μm, and an indium composition of x = 0.59 in the intrinsic layer. This fully optimized configuration achieved a maximum conversion efficiency (η) of 21.40%, a short-circuit current density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">J</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 28.2 mA/cm<sup>2</sup>, and an open-circuit voltage (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 0.874 V. The systematic optimization approach demonstrates the critical importance of simultaneous parameter optimization in achieving superior photovoltaic performance, with the final device configuration representing a 30.01% efficiency improvement compared to the baseline structure. These findings provide critical insights for improving the design and performance of InGaN-based solar cells, serving as a valuable reference for future experimental research.
format Article
id doaj-art-3f3cd0e0180841368a0e4e184f046bd3
institution Kabale University
issn 2073-4352
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj-art-3f3cd0e0180841368a0e4e184f046bd32025-08-20T03:32:12ZengMDPI AGCrystals2073-43522025-07-0115763310.3390/cryst15070633Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D ModelingHassan Abboudi0Walid Belaid1Redouane En-nadir2Ilyass Ez-zejjari3Mohammed Zouini4Ahmed Sali5Haddou El Ghazi6Laboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoSchool of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UKLaboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoCCP Laboratory, ENSAM, Hassan 2 University, Casablanca 20670, MoroccoNational Superior School, Sidi Mohamed Ben Abdellah University, Fes 30000, MoroccoLaboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoLaboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoThis study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.6</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.4</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, an intrinsic i-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.52</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.48</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, and an n-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.48</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.52</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer. A systematic parametric optimization methodology was employed, involving a sequential investigation of doping concentrations, layer thicknesses, and indium composition to identify the optimal device configuration. Initial optimization of doping levels established optimal concentrations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">d</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>16</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the p-layer and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">a</mi></mrow></msub><mo>=</mo><mn>8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>17</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the n-layer. Subsequently, structural parameters were optimized through systematic variation of layer thicknesses while maintaining optimal doping concentrations. The comprehensive optimization culminated in the identification of an optimal device architecture featuring a p-type layer thickness of 0.2 μm, an intrinsic layer thickness of 0.4 μm, an n-type layer thickness of 0.06 μm, and an indium composition of x = 0.59 in the intrinsic layer. This fully optimized configuration achieved a maximum conversion efficiency (η) of 21.40%, a short-circuit current density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">J</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 28.2 mA/cm<sup>2</sup>, and an open-circuit voltage (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 0.874 V. The systematic optimization approach demonstrates the critical importance of simultaneous parameter optimization in achieving superior photovoltaic performance, with the final device configuration representing a 30.01% efficiency improvement compared to the baseline structure. These findings provide critical insights for improving the design and performance of InGaN-based solar cells, serving as a valuable reference for future experimental research.https://www.mdpi.com/2073-4352/15/7/633InGaN solar cellsp-i-n structureSCAPS-1D simulationbandgap engineeringdoping optimizationlayer-thickness design
spellingShingle Hassan Abboudi
Walid Belaid
Redouane En-nadir
Ilyass Ez-zejjari
Mohammed Zouini
Ahmed Sali
Haddou El Ghazi
Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
Crystals
InGaN solar cells
p-i-n structure
SCAPS-1D simulation
bandgap engineering
doping optimization
layer-thickness design
title Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
title_full Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
title_fullStr Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
title_full_unstemmed Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
title_short Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
title_sort optimization of in sub x sub ga sub 1 x sub n p i n solar cells achieving 21 efficiency through scaps 1d modeling
topic InGaN solar cells
p-i-n structure
SCAPS-1D simulation
bandgap engineering
doping optimization
layer-thickness design
url https://www.mdpi.com/2073-4352/15/7/633
work_keys_str_mv AT hassanabboudi optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling
AT walidbelaid optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling
AT redouaneennadir optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling
AT ilyassezzejjari optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling
AT mohammedzouini optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling
AT ahmedsali optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling
AT haddouelghazi optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling