Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling
This study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">&...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Crystals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4352/15/7/633 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849419209508913152 |
|---|---|
| author | Hassan Abboudi Walid Belaid Redouane En-nadir Ilyass Ez-zejjari Mohammed Zouini Ahmed Sali Haddou El Ghazi |
| author_facet | Hassan Abboudi Walid Belaid Redouane En-nadir Ilyass Ez-zejjari Mohammed Zouini Ahmed Sali Haddou El Ghazi |
| author_sort | Hassan Abboudi |
| collection | DOAJ |
| description | This study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.6</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.4</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, an intrinsic i-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.52</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.48</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, and an n-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.48</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.52</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer. A systematic parametric optimization methodology was employed, involving a sequential investigation of doping concentrations, layer thicknesses, and indium composition to identify the optimal device configuration. Initial optimization of doping levels established optimal concentrations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">d</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>16</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the p-layer and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">a</mi></mrow></msub><mo>=</mo><mn>8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>17</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the n-layer. Subsequently, structural parameters were optimized through systematic variation of layer thicknesses while maintaining optimal doping concentrations. The comprehensive optimization culminated in the identification of an optimal device architecture featuring a p-type layer thickness of 0.2 μm, an intrinsic layer thickness of 0.4 μm, an n-type layer thickness of 0.06 μm, and an indium composition of x = 0.59 in the intrinsic layer. This fully optimized configuration achieved a maximum conversion efficiency (η) of 21.40%, a short-circuit current density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">J</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 28.2 mA/cm<sup>2</sup>, and an open-circuit voltage (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 0.874 V. The systematic optimization approach demonstrates the critical importance of simultaneous parameter optimization in achieving superior photovoltaic performance, with the final device configuration representing a 30.01% efficiency improvement compared to the baseline structure. These findings provide critical insights for improving the design and performance of InGaN-based solar cells, serving as a valuable reference for future experimental research. |
| format | Article |
| id | doaj-art-3f3cd0e0180841368a0e4e184f046bd3 |
| institution | Kabale University |
| issn | 2073-4352 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Crystals |
| spelling | doaj-art-3f3cd0e0180841368a0e4e184f046bd32025-08-20T03:32:12ZengMDPI AGCrystals2073-43522025-07-0115763310.3390/cryst15070633Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D ModelingHassan Abboudi0Walid Belaid1Redouane En-nadir2Ilyass Ez-zejjari3Mohammed Zouini4Ahmed Sali5Haddou El Ghazi6Laboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoSchool of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UKLaboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoCCP Laboratory, ENSAM, Hassan 2 University, Casablanca 20670, MoroccoNational Superior School, Sidi Mohamed Ben Abdellah University, Fes 30000, MoroccoLaboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoLaboratory of Solid State Physics, Faculty of Sciences, Mohamed Ben Abdellah University, Fes 30000, MoroccoThis study provides an in-depth numerical simulation to optimize the structure of InGaN-based p-i-n single homojunction solar cells using SCAPS-1D software. The cell comprised a p-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.6</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.4</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, an intrinsic i-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.52</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.48</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer, and an n-type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">I</mi><mi mathvariant="normal">n</mi></mrow><mn>0.48</mn></msub><msub><mrow><mi mathvariant="normal">G</mi><mi mathvariant="normal">a</mi></mrow><mn>0.52</mn></msub><mi mathvariant="normal">N</mi></mrow></semantics></math></inline-formula> layer. A systematic parametric optimization methodology was employed, involving a sequential investigation of doping concentrations, layer thicknesses, and indium composition to identify the optimal device configuration. Initial optimization of doping levels established optimal concentrations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">d</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>16</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the p-layer and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">N</mi></mrow><mrow><mi mathvariant="normal">a</mi></mrow></msub><mo>=</mo><mn>8</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>17</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for the n-layer. Subsequently, structural parameters were optimized through systematic variation of layer thicknesses while maintaining optimal doping concentrations. The comprehensive optimization culminated in the identification of an optimal device architecture featuring a p-type layer thickness of 0.2 μm, an intrinsic layer thickness of 0.4 μm, an n-type layer thickness of 0.06 μm, and an indium composition of x = 0.59 in the intrinsic layer. This fully optimized configuration achieved a maximum conversion efficiency (η) of 21.40%, a short-circuit current density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="normal">J</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 28.2 mA/cm<sup>2</sup>, and an open-circuit voltage (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 0.874 V. The systematic optimization approach demonstrates the critical importance of simultaneous parameter optimization in achieving superior photovoltaic performance, with the final device configuration representing a 30.01% efficiency improvement compared to the baseline structure. These findings provide critical insights for improving the design and performance of InGaN-based solar cells, serving as a valuable reference for future experimental research.https://www.mdpi.com/2073-4352/15/7/633InGaN solar cellsp-i-n structureSCAPS-1D simulationbandgap engineeringdoping optimizationlayer-thickness design |
| spellingShingle | Hassan Abboudi Walid Belaid Redouane En-nadir Ilyass Ez-zejjari Mohammed Zouini Ahmed Sali Haddou El Ghazi Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling Crystals InGaN solar cells p-i-n structure SCAPS-1D simulation bandgap engineering doping optimization layer-thickness design |
| title | Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling |
| title_full | Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling |
| title_fullStr | Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling |
| title_full_unstemmed | Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling |
| title_short | Optimization of In<sub>x</sub>Ga<sub>1−x</sub>N P-I-N Solar Cells: Achieving 21% Efficiency Through SCAPS-1D Modeling |
| title_sort | optimization of in sub x sub ga sub 1 x sub n p i n solar cells achieving 21 efficiency through scaps 1d modeling |
| topic | InGaN solar cells p-i-n structure SCAPS-1D simulation bandgap engineering doping optimization layer-thickness design |
| url | https://www.mdpi.com/2073-4352/15/7/633 |
| work_keys_str_mv | AT hassanabboudi optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling AT walidbelaid optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling AT redouaneennadir optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling AT ilyassezzejjari optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling AT mohammedzouini optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling AT ahmedsali optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling AT haddouelghazi optimizationofinsubxsubgasub1xsubnpinsolarcellsachieving21efficiencythroughscaps1dmodeling |