A Hybrid Soft Sensor Approach Combining Partial Least-Squares Regression and an Unscented Kalman Filter for State Estimation in Bioprocesses
Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Bioengineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5354/12/6/654 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine (L-phe) production process were carried out using a recombinant <i>Escherichia coli</i> strain under varying inducer concentrations. The available online process variables from the L-phe production process were used to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions were then incorporated as measurements into an unscented Kalman filter (UKF). The filter uses a coarse-grained model as a state estimator, which, in addition to extracellular variables, also provides information on intracellular states. The results of PLSR showed very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and L-tyr and poor performance for acetate concentrations. In combination with the UKF, the estimation of the L-phe concentrations was greatly improved compared to the CGM, whereas further improvement is still needed for the remaining state variables. |
|---|---|
| ISSN: | 2306-5354 |