Path Integral Spin Dynamics for Quantum Paramagnets

Abstract A path integral method, combined with atomistic spin dynamics simulations, is developed to calculate thermal quantum expectation values using a classical approach. In this study, it is shown how to treat Hamiltonians with non‐linear terms, that are relevant for describing uniaxial anisotrop...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas Nussle, Pascal Thibaudeau, Stam Nicolis
Format: Article
Language:English
Published: Wiley-VCH 2025-08-01
Series:Advanced Physics Research
Subjects:
Online Access:https://doi.org/10.1002/apxr.202400057
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849769966836908032
author Thomas Nussle
Pascal Thibaudeau
Stam Nicolis
author_facet Thomas Nussle
Pascal Thibaudeau
Stam Nicolis
author_sort Thomas Nussle
collection DOAJ
description Abstract A path integral method, combined with atomistic spin dynamics simulations, is developed to calculate thermal quantum expectation values using a classical approach. In this study, it is shown how to treat Hamiltonians with non‐linear terms, that are relevant for describing uniaxial anisotropies and mechanical constraints. These interactions can be expressed solely through quadratic terms of the spin operator along one axis, that can be identified with the quantization axis.
format Article
id doaj-art-3f186be5c1be45f2a3422c4fa7a6af62
institution DOAJ
issn 2751-1200
language English
publishDate 2025-08-01
publisher Wiley-VCH
record_format Article
series Advanced Physics Research
spelling doaj-art-3f186be5c1be45f2a3422c4fa7a6af622025-08-20T03:03:12ZengWiley-VCHAdvanced Physics Research2751-12002025-08-0148n/an/a10.1002/apxr.202400057Path Integral Spin Dynamics for Quantum ParamagnetsThomas Nussle0Pascal Thibaudeau1Stam Nicolis2School of Physics and Astronomy University of Leeds Leeds LS2 9JT UKCEA – DAM – Le Ripault Monts F‐37260 FranceInstitut Denis Poisson Université de Tours Université d'Orléans CNRS (UMR7013), Parc de Grandmont Tours F‐37200 FranceAbstract A path integral method, combined with atomistic spin dynamics simulations, is developed to calculate thermal quantum expectation values using a classical approach. In this study, it is shown how to treat Hamiltonians with non‐linear terms, that are relevant for describing uniaxial anisotropies and mechanical constraints. These interactions can be expressed solely through quadratic terms of the spin operator along one axis, that can be identified with the quantization axis.https://doi.org/10.1002/apxr.202400057atomistic spin dynamicspath integralsparamagnetic hamiltonianquantum magnetization
spellingShingle Thomas Nussle
Pascal Thibaudeau
Stam Nicolis
Path Integral Spin Dynamics for Quantum Paramagnets
Advanced Physics Research
atomistic spin dynamics
path integrals
paramagnetic hamiltonian
quantum magnetization
title Path Integral Spin Dynamics for Quantum Paramagnets
title_full Path Integral Spin Dynamics for Quantum Paramagnets
title_fullStr Path Integral Spin Dynamics for Quantum Paramagnets
title_full_unstemmed Path Integral Spin Dynamics for Quantum Paramagnets
title_short Path Integral Spin Dynamics for Quantum Paramagnets
title_sort path integral spin dynamics for quantum paramagnets
topic atomistic spin dynamics
path integrals
paramagnetic hamiltonian
quantum magnetization
url https://doi.org/10.1002/apxr.202400057
work_keys_str_mv AT thomasnussle pathintegralspindynamicsforquantumparamagnets
AT pascalthibaudeau pathintegralspindynamicsforquantumparamagnets
AT stamnicolis pathintegralspindynamicsforquantumparamagnets