Path Integral Spin Dynamics for Quantum Paramagnets
Abstract A path integral method, combined with atomistic spin dynamics simulations, is developed to calculate thermal quantum expectation values using a classical approach. In this study, it is shown how to treat Hamiltonians with non‐linear terms, that are relevant for describing uniaxial anisotrop...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley-VCH
2025-08-01
|
| Series: | Advanced Physics Research |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/apxr.202400057 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849769966836908032 |
|---|---|
| author | Thomas Nussle Pascal Thibaudeau Stam Nicolis |
| author_facet | Thomas Nussle Pascal Thibaudeau Stam Nicolis |
| author_sort | Thomas Nussle |
| collection | DOAJ |
| description | Abstract A path integral method, combined with atomistic spin dynamics simulations, is developed to calculate thermal quantum expectation values using a classical approach. In this study, it is shown how to treat Hamiltonians with non‐linear terms, that are relevant for describing uniaxial anisotropies and mechanical constraints. These interactions can be expressed solely through quadratic terms of the spin operator along one axis, that can be identified with the quantization axis. |
| format | Article |
| id | doaj-art-3f186be5c1be45f2a3422c4fa7a6af62 |
| institution | DOAJ |
| issn | 2751-1200 |
| language | English |
| publishDate | 2025-08-01 |
| publisher | Wiley-VCH |
| record_format | Article |
| series | Advanced Physics Research |
| spelling | doaj-art-3f186be5c1be45f2a3422c4fa7a6af622025-08-20T03:03:12ZengWiley-VCHAdvanced Physics Research2751-12002025-08-0148n/an/a10.1002/apxr.202400057Path Integral Spin Dynamics for Quantum ParamagnetsThomas Nussle0Pascal Thibaudeau1Stam Nicolis2School of Physics and Astronomy University of Leeds Leeds LS2 9JT UKCEA – DAM – Le Ripault Monts F‐37260 FranceInstitut Denis Poisson Université de Tours Université d'Orléans CNRS (UMR7013), Parc de Grandmont Tours F‐37200 FranceAbstract A path integral method, combined with atomistic spin dynamics simulations, is developed to calculate thermal quantum expectation values using a classical approach. In this study, it is shown how to treat Hamiltonians with non‐linear terms, that are relevant for describing uniaxial anisotropies and mechanical constraints. These interactions can be expressed solely through quadratic terms of the spin operator along one axis, that can be identified with the quantization axis.https://doi.org/10.1002/apxr.202400057atomistic spin dynamicspath integralsparamagnetic hamiltonianquantum magnetization |
| spellingShingle | Thomas Nussle Pascal Thibaudeau Stam Nicolis Path Integral Spin Dynamics for Quantum Paramagnets Advanced Physics Research atomistic spin dynamics path integrals paramagnetic hamiltonian quantum magnetization |
| title | Path Integral Spin Dynamics for Quantum Paramagnets |
| title_full | Path Integral Spin Dynamics for Quantum Paramagnets |
| title_fullStr | Path Integral Spin Dynamics for Quantum Paramagnets |
| title_full_unstemmed | Path Integral Spin Dynamics for Quantum Paramagnets |
| title_short | Path Integral Spin Dynamics for Quantum Paramagnets |
| title_sort | path integral spin dynamics for quantum paramagnets |
| topic | atomistic spin dynamics path integrals paramagnetic hamiltonian quantum magnetization |
| url | https://doi.org/10.1002/apxr.202400057 |
| work_keys_str_mv | AT thomasnussle pathintegralspindynamicsforquantumparamagnets AT pascalthibaudeau pathintegralspindynamicsforquantumparamagnets AT stamnicolis pathintegralspindynamicsforquantumparamagnets |