Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology

Abstract A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide images from the largest reported...

Full description

Saved in:
Bibliographic Details
Main Authors: Siddhi Ramesh, Emma Dyer, Monica Pomaville, Kristina Doytcheva, James Dolezal, Sara Kochanny, Rachel Terhaar, Casey J. Mehrhoff, Kritika Patel, Jacob Brewer, Benjamin Kusswurm, Arlene Naranjo, Hiroyuki Shimada, Nicole A. Cipriani, Aliya N. Husain, Peter Pytel, Elizabeth A. Sokol, Susan L. Cohn, Rani E. George, Alexander T. Pearson, Mark A. Applebaum
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:npj Precision Oncology
Online Access:https://doi.org/10.1038/s41698-024-00745-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846172303849684992
author Siddhi Ramesh
Emma Dyer
Monica Pomaville
Kristina Doytcheva
James Dolezal
Sara Kochanny
Rachel Terhaar
Casey J. Mehrhoff
Kritika Patel
Jacob Brewer
Benjamin Kusswurm
Arlene Naranjo
Hiroyuki Shimada
Nicole A. Cipriani
Aliya N. Husain
Peter Pytel
Elizabeth A. Sokol
Susan L. Cohn
Rani E. George
Alexander T. Pearson
Mark A. Applebaum
author_facet Siddhi Ramesh
Emma Dyer
Monica Pomaville
Kristina Doytcheva
James Dolezal
Sara Kochanny
Rachel Terhaar
Casey J. Mehrhoff
Kritika Patel
Jacob Brewer
Benjamin Kusswurm
Arlene Naranjo
Hiroyuki Shimada
Nicole A. Cipriani
Aliya N. Husain
Peter Pytel
Elizabeth A. Sokol
Susan L. Cohn
Rani E. George
Alexander T. Pearson
Mark A. Applebaum
author_sort Siddhi Ramesh
collection DOAJ
description Abstract A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide images from the largest reported cohort to date. The model showed promising performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and MYCN-amplification with validation on an external test dataset, suggesting potential for AI-assisted neuroblastoma classification.
format Article
id doaj-art-3ee6eb5342a14a0d87b21a668f03f699
institution Kabale University
issn 2397-768X
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
series npj Precision Oncology
spelling doaj-art-3ee6eb5342a14a0d87b21a668f03f6992024-11-10T12:04:54ZengNature Portfolionpj Precision Oncology2397-768X2024-11-01811610.1038/s41698-024-00745-0Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathologySiddhi Ramesh0Emma Dyer1Monica Pomaville2Kristina Doytcheva3James Dolezal4Sara Kochanny5Rachel Terhaar6Casey J. Mehrhoff7Kritika Patel8Jacob Brewer9Benjamin Kusswurm10Arlene Naranjo11Hiroyuki Shimada12Nicole A. Cipriani13Aliya N. Husain14Peter Pytel15Elizabeth A. Sokol16Susan L. Cohn17Rani E. George18Alexander T. Pearson19Mark A. Applebaum20Department of Medicine, University of ChicagoDepartment of Medicine, University of ChicagoDepartment of Pediatrics, The Children’s Hospital of PhiladelphiaAnatomic Pathology Department of Oklahoma University Medical CenterGeisinger Cancer InstituteDepartment of Medicine, University of ChicagoPritzker School of Medicine, University of ChicagoIntermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of UtahCancer and Blood Disorders Center, Seattle Children’s HospitalApplied Data Science Program, University of ChicagoApplied Data Science Program, University of ChicagoChildren’s Oncology Group Statistics and Data Center, Department of Biostatistics, University of FloridaDepartment of Pathology and Pediatrics, Stanford UniversityDepartment of Pathology, University of ChicagoDepartment of Pathology, University of ChicagoDepartment of Pathology, University of ChicagoDivision of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of MedicineDepartment of Pediatrics, University of ChicagoDepartment of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children’s HospitalDepartment of Medicine, University of ChicagoDepartment of Pediatrics, University of ChicagoAbstract A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide images from the largest reported cohort to date. The model showed promising performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and MYCN-amplification with validation on an external test dataset, suggesting potential for AI-assisted neuroblastoma classification.https://doi.org/10.1038/s41698-024-00745-0
spellingShingle Siddhi Ramesh
Emma Dyer
Monica Pomaville
Kristina Doytcheva
James Dolezal
Sara Kochanny
Rachel Terhaar
Casey J. Mehrhoff
Kritika Patel
Jacob Brewer
Benjamin Kusswurm
Arlene Naranjo
Hiroyuki Shimada
Nicole A. Cipriani
Aliya N. Husain
Peter Pytel
Elizabeth A. Sokol
Susan L. Cohn
Rani E. George
Alexander T. Pearson
Mark A. Applebaum
Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
npj Precision Oncology
title Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
title_full Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
title_fullStr Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
title_full_unstemmed Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
title_short Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
title_sort artificial intelligence based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
url https://doi.org/10.1038/s41698-024-00745-0
work_keys_str_mv AT siddhiramesh artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT emmadyer artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT monicapomaville artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT kristinadoytcheva artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT jamesdolezal artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT sarakochanny artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT rachelterhaar artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT caseyjmehrhoff artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT kritikapatel artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT jacobbrewer artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT benjaminkusswurm artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT arlenenaranjo artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT hiroyukishimada artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT nicoleacipriani artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT aliyanhusain artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT peterpytel artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT elizabethasokol artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT susanlcohn artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT raniegeorge artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT alexandertpearson artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology
AT markaapplebaum artificialintelligencebasedmorphologicclassificationandmolecularcharacterizationofneuroblastictumorsfromdigitalhistopathology