Airflow Dynamics for Micro-Wind Environment Optimization and Human Comfort Improvement: Roadshow Design for Theater Stage Spaces
The optimization of ventilation strategies in high-ceiling theater stage spaces is crucial for improving thermal comfort and energy efficiency. This study addresses the challenge of uneven temperature distribution and airflow stagnation in stage environments by employing computational fluid dynamics...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/14/4456 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The optimization of ventilation strategies in high-ceiling theater stage spaces is crucial for improving thermal comfort and energy efficiency. This study addresses the challenge of uneven temperature distribution and airflow stagnation in stage environments by employing computational fluid dynamics (CFD) simulations to evaluate the effectiveness of different ventilation modes, including natural, mechanical, and hybrid systems. Six airflow organization scenarios were designed based on modifications to structural layout, equipment settings, and mechanical disturbances (e.g., fan integration). Key evaluation indicators such as temperature uniformity coefficient, airflow velocity, and exhaust efficiency were used to assess performance. The results show that a multi-dimensional optimization approach combining spatial adjustments and mechanical disturbances significantly reduced the average temperature from 26 °C to 23 °C and the temperature uniformity coefficient from 2.79 to 1.49. This study contributes a comprehensive design strategy for stage ventilation that improves comfort while minimizing energy consumption, offering practical implications for performance space design and HVAC system integration. |
|---|---|
| ISSN: | 1424-8220 |