Two Kinds of Classifications Based on Improved Gravitational Search Algorithm and Particle Swarm Optimization Algorithm
Gravitational Search Algorithm (GSA) is a widely used metaheuristic algorithm. Although fewer parameters in GSA were adjusted, GSA has a slow convergence rate. In this paper, we change the constant acceleration coefficients to be the exponential function on the basis of combination of GSA and PSO (P...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Advances in Mathematical Physics |
| Online Access: | http://dx.doi.org/10.1155/2017/2131862 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Gravitational Search Algorithm (GSA) is a widely used metaheuristic algorithm. Although fewer parameters in GSA were adjusted, GSA has a slow convergence rate. In this paper, we change the constant acceleration coefficients to be the exponential function on the basis of combination of GSA and PSO (PSO-GSA) and propose an improved PSO-GSA algorithm (written as I-PSO-GSA) for solving two kinds of classifications: surface water quality and the moving direction of robots. I-PSO-GSA is employed to optimize weights and biases of backpropagation (BP) neural network. The experimental results show that, being compared with combination of PSO and GSA (PSO-GSA), single PSO, and single GSA for optimizing the parameters of BP neural network, I-PSO-GSA outperforms PSO-GSA, PSO, and GSA and has better classification accuracy for these two actual problems. |
|---|---|
| ISSN: | 1687-9120 1687-9139 |