Construction of a neural network model for small-scale shaded relief maps constrained by topographic feature lines

Traditional manual methods for generating shaded relief maps can effectively highlight major topographic structures but are time-consuming and require professional skills. Analytical shading methods are faster but often lead to maps overloaded with terrain details, obscuring key topographic features...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Wang, Wenping Jiang, Han Jiang, Danfeng Dai, Peiyang Ma, Yuan Wang, Zhizhi Wang
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Geocarto International
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/10106049.2025.2459099
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional manual methods for generating shaded relief maps can effectively highlight major topographic structures but are time-consuming and require professional skills. Analytical shading methods are faster but often lead to maps overloaded with terrain details, obscuring key topographic features, especially in Small-Scale Shaded Relief Maps (SSSR-Maps). This study focuses on the relief shading of alpine canyon terrain, introduces topographic feature lines (TFLs) as constraints, and constructs a neural network model based on Pix2pixHD, namely, TFLC-CGAN. Two generation methods, TFLC-CGAN-E and TFLC-CGAN-M, are proposed and compared. Experimental results show that TFLC-CGAN can generate SSSR-Maps with manual shading styles, simplifying terrain while preserving key features. TFLC-CGAN-E adapts better to sharply reduced TFL density, while TFLC-CGAN-M excels in feature preservation. Additionally, the relationships among digital elevation model resolution, TFL density, and the generated shaded relief map scales are explored. The proposed TFLC-CGAN offers an efficient solution for large-scale production of SSSR-Maps.
ISSN:1010-6049
1752-0762