Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies

Spin-crossover (SCO) and single-ion magnets (SIMs), or their mixed SCO-SIM derivatives, are a convenient solution in the evolution from molecular magnetism toward molecular spintronics and quantum computing. Herein, we report on the current trends and future directions on the use of mononuclear six-...

Full description

Saved in:
Bibliographic Details
Main Authors: Renato Rabelo, Luminita M. Toma, Abdeslem Bentama, Salah-Eddine Stiriba, Rafael Ruiz-García, Joan Cano
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Magnetochemistry
Subjects:
Online Access:https://www.mdpi.com/2312-7481/10/12/107
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850037171202818048
author Renato Rabelo
Luminita M. Toma
Abdeslem Bentama
Salah-Eddine Stiriba
Rafael Ruiz-García
Joan Cano
author_facet Renato Rabelo
Luminita M. Toma
Abdeslem Bentama
Salah-Eddine Stiriba
Rafael Ruiz-García
Joan Cano
author_sort Renato Rabelo
collection DOAJ
description Spin-crossover (SCO) and single-ion magnets (SIMs), or their mixed SCO-SIM derivatives, are a convenient solution in the evolution from molecular magnetism toward molecular spintronics and quantum computing. Herein, we report on the current trends and future directions on the use of mononuclear six-coordinate Co<sup>II</sup> SCO-SIM complexes with potential opto-, electro-, or chemo-active 2,6-pyridinediimine (PDI)- and 2,2′:6′,2′-terpyridine (TERPY)-type ligands as archetypical examples of multifunctional and multiresponsive magnetic devices for applications in molecular spintronics and quantum computing technologies. This unique class of spin-crossover cobalt(II) molecular nanomagnets is particularly well suited for addressing and scaling on different supports, like metal molecular junctions or carbon nanomaterials (CNMs) and metal–organic frameworks (MOFs) or metal-covalent organic frameworks (MCOFs), in order to measure the single-molecule electron transport and quantum coherence properties, which are two major challenges in single-molecule spintronics (SMS) and quantum information processing (QIP).
format Article
id doaj-art-3ecba431eb4840b79487f6c2dc52dab6
institution DOAJ
issn 2312-7481
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Magnetochemistry
spelling doaj-art-3ecba431eb4840b79487f6c2dc52dab62025-08-20T02:56:56ZengMDPI AGMagnetochemistry2312-74812024-12-01101210710.3390/magnetochemistry10120107Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing TechnologiesRenato Rabelo0Luminita M. Toma1Abdeslem Bentama2Salah-Eddine Stiriba3Rafael Ruiz-García4Joan Cano5Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, SpainInstituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, SpainLaboratoire de Chimie Organique Appliquée, Faculté des Sciences Techniques de Fès, Université Sidi Mohammed Ben Abdellah, Fès 30000, MoroccoInstituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, SpainInstituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, SpainInstituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, SpainSpin-crossover (SCO) and single-ion magnets (SIMs), or their mixed SCO-SIM derivatives, are a convenient solution in the evolution from molecular magnetism toward molecular spintronics and quantum computing. Herein, we report on the current trends and future directions on the use of mononuclear six-coordinate Co<sup>II</sup> SCO-SIM complexes with potential opto-, electro-, or chemo-active 2,6-pyridinediimine (PDI)- and 2,2′:6′,2′-terpyridine (TERPY)-type ligands as archetypical examples of multifunctional and multiresponsive magnetic devices for applications in molecular spintronics and quantum computing technologies. This unique class of spin-crossover cobalt(II) molecular nanomagnets is particularly well suited for addressing and scaling on different supports, like metal molecular junctions or carbon nanomaterials (CNMs) and metal–organic frameworks (MOFs) or metal-covalent organic frameworks (MCOFs), in order to measure the single-molecule electron transport and quantum coherence properties, which are two major challenges in single-molecule spintronics (SMS) and quantum information processing (QIP).https://www.mdpi.com/2312-7481/10/12/107cobalt complexescoordination chemistrydynamic molecular systemsligand designnon-innocent ligandssingle-ion magnets
spellingShingle Renato Rabelo
Luminita M. Toma
Abdeslem Bentama
Salah-Eddine Stiriba
Rafael Ruiz-García
Joan Cano
Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
Magnetochemistry
cobalt complexes
coordination chemistry
dynamic molecular systems
ligand design
non-innocent ligands
single-ion magnets
title Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
title_full Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
title_fullStr Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
title_full_unstemmed Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
title_short Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
title_sort exploring spin crossover cobalt ii single ion magnets as multifunctional and multiresponsive magnetic devices advancements and prospects in molecular spintronics and quantum computing technologies
topic cobalt complexes
coordination chemistry
dynamic molecular systems
ligand design
non-innocent ligands
single-ion magnets
url https://www.mdpi.com/2312-7481/10/12/107
work_keys_str_mv AT renatorabelo exploringspincrossovercobaltiisingleionmagnetsasmultifunctionalandmultiresponsivemagneticdevicesadvancementsandprospectsinmolecularspintronicsandquantumcomputingtechnologies
AT luminitamtoma exploringspincrossovercobaltiisingleionmagnetsasmultifunctionalandmultiresponsivemagneticdevicesadvancementsandprospectsinmolecularspintronicsandquantumcomputingtechnologies
AT abdeslembentama exploringspincrossovercobaltiisingleionmagnetsasmultifunctionalandmultiresponsivemagneticdevicesadvancementsandprospectsinmolecularspintronicsandquantumcomputingtechnologies
AT salaheddinestiriba exploringspincrossovercobaltiisingleionmagnetsasmultifunctionalandmultiresponsivemagneticdevicesadvancementsandprospectsinmolecularspintronicsandquantumcomputingtechnologies
AT rafaelruizgarcia exploringspincrossovercobaltiisingleionmagnetsasmultifunctionalandmultiresponsivemagneticdevicesadvancementsandprospectsinmolecularspintronicsandquantumcomputingtechnologies
AT joancano exploringspincrossovercobaltiisingleionmagnetsasmultifunctionalandmultiresponsivemagneticdevicesadvancementsandprospectsinmolecularspintronicsandquantumcomputingtechnologies