Design and Experimental Research on a Chisel-Type Variable Hierarchical Deep Fertilization Device Suitable for Saline–Alkali Soil

In China, there are around 36.7 million hectares of saline–alkali lands that hold utilization potential. Precision fertilization stands as a vital measure for enhancing the quality of saline–alkali soil and promoting a significant increase in crop yields. The performance of the fertilization device...

Full description

Saved in:
Bibliographic Details
Main Authors: Nan Xu, Zhenbo Xin, Jin Yuan, Zenghui Gao, Yu Tian, Chao Xia, Xuemei Liu, Dongwei Wang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/2/209
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In China, there are around 36.7 million hectares of saline–alkali lands that hold utilization potential. Precision fertilization stands as a vital measure for enhancing the quality of saline–alkali soil and promoting a significant increase in crop yields. The performance of the fertilization device is a decisive factor in determining the effectiveness of fertilization. To optimize the fertilizer utilization rate in coastal saline–alkali soils and substantially reduce fertilizer waste, it is imperative to transport fertilizers to the deep soil layers and execute layered variable-rate fertilization. In light of this, a chisel-type variable-rate layered electronically controlled deep-fertilization device specifically designed for saline–alkali soils has been developed. Extensive experimental research on its fertilization performance has also been carried out. Drawing on the principles of soil dynamics, this paper meticulously investigates the structures of key components and the operating parameters of the fertilization device. Key parameters such as the penetration angle of the fertilizer shovel, the penetration clearance angle, the curvature of the shovel handle, the angle between the fertilizer baffle and the fertilizer pipe wall, the angle between the fertilizer pipe and the horizontal plane, and the forward speed are precisely determined. Moreover, this study explores the quantitative relationship between the fertilizer discharge amount of the fertilizer applicator and the effective working width. Simultaneously, this research mainly focuses on analyzing the impact of the forward speed on the operational effect of layered and variable-rate fertilization. Through a series of field experiments, it was conclusively determined that the optimal fertilization effect was attained when the forward speed was set at 6 km/h. Under this condition, the average deviation in the fertilization amount was merely 2.76%, and the average coefficients of variation in the fertilizer amount uniformity in each soil layer were 7.62, 6.32, 6.06, and 5.65%, respectively. Evidently, the experimental results not only successfully met the pre-set objectives, but also fully satisfied the design requirements. Undoubtedly, this article can offer valuable methodological references for the research and development of fertilization devices tailored for diverse crops cultivated on saline–alkali lands.
ISSN:2077-0472