System Identification Using Multilayer Differential Neural Networks: A New Result

In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relax...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Humberto Pérez-Cruz, A. Y. Alanis, José de Jesús Rubio, Jaime Pacheco
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/529176
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850216196891213824
author J. Humberto Pérez-Cruz
A. Y. Alanis
José de Jesús Rubio
Jaime Pacheco
author_facet J. Humberto Pérez-Cruz
A. Y. Alanis
José de Jesús Rubio
Jaime Pacheco
author_sort J. Humberto Pérez-Cruz
collection DOAJ
description In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.
format Article
id doaj-art-3e7d933b042c4cc493cc103e6b4cdb52
institution OA Journals
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-3e7d933b042c4cc493cc103e6b4cdb522025-08-20T02:08:23ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/529176529176System Identification Using Multilayer Differential Neural Networks: A New ResultJ. Humberto Pérez-Cruz0A. Y. Alanis1José de Jesús Rubio2Jaime Pacheco3Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán No. 1421, 44430 Guadalajara, JAL, MexicoCentro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán No. 1421, 44430 Guadalajara, JAL, MexicoSección de Estudios de Posgrado e Investigación, ESIME-UA, IPN, Avenida de las Granjas No. 682, 02250 Santa Catarina, NL, MexicoSección de Estudios de Posgrado e Investigación, ESIME-UA, IPN, Avenida de las Granjas No. 682, 02250 Santa Catarina, NL, MexicoIn previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.http://dx.doi.org/10.1155/2012/529176
spellingShingle J. Humberto Pérez-Cruz
A. Y. Alanis
José de Jesús Rubio
Jaime Pacheco
System Identification Using Multilayer Differential Neural Networks: A New Result
Journal of Applied Mathematics
title System Identification Using Multilayer Differential Neural Networks: A New Result
title_full System Identification Using Multilayer Differential Neural Networks: A New Result
title_fullStr System Identification Using Multilayer Differential Neural Networks: A New Result
title_full_unstemmed System Identification Using Multilayer Differential Neural Networks: A New Result
title_short System Identification Using Multilayer Differential Neural Networks: A New Result
title_sort system identification using multilayer differential neural networks a new result
url http://dx.doi.org/10.1155/2012/529176
work_keys_str_mv AT jhumbertoperezcruz systemidentificationusingmultilayerdifferentialneuralnetworksanewresult
AT ayalanis systemidentificationusingmultilayerdifferentialneuralnetworksanewresult
AT josedejesusrubio systemidentificationusingmultilayerdifferentialneuralnetworksanewresult
AT jaimepacheco systemidentificationusingmultilayerdifferentialneuralnetworksanewresult